Skip to content
Related Articles

Related Articles

Java Program to Implement wheel Sieve to Generate Prime Numbers Between Given Range

Improve Article
Save Article
  • Last Updated : 16 Jun, 2021
Improve Article
Save Article

A prime number is a whole number greater than 1, which is only divisible by 1 and itself. The first few prime numbers are 2 3 5 7 11 13 17 19 23. Given a range, L to R, the task is to generate all the prime numbers that exist in the Range.

Examples

Input: 1 10
Output 2 3 5 7

Input: 20 30 
Output: 23 29

Approach 1: Check every element whether the element is prime or not.

  • Iterate in the Range L to R
  • Check every element whether the element is prime or not
  • Print the prime numbers in the range

Example

Java




// Java Program to Implement wheel Sieve to Generate Prime
// Numbers Between Given Range
 
import java.io.*;
 
class GFG {
    static boolean checkPrime(int n)
    {
        // Handling the edge case
        if (n == 1) {
            return false;
        }
        for (int i = 2; i <= Math.sqrt(n); ++i) {
 
            // checking the prime number
            if (n % i == 0) {
                return false;
            }
        }
 
        return true;
    }
    public static void main(String[] args)
    {
        // starting in a range
        int L = 1;
 
        // ending in a range
        int R = 20;
 
        for (int i = L; i <= R; ++i) {
 
            // printing the prime number
            if (checkPrime(i) == true) {
                System.out.print(i + " ");
            }
        }
    }
}

 
 

Output

2 3 5 7 11 13 17 19
  • Time Complexity: O(n * sqrt(n))
  • Space Complexity: O(1)

 

Approach 2: Using Sieve of Eratosthenes to Generate all the prime numbers

 

  • Generate all the prime numbers using Sieve of Eratosthenes (Refer this article)
  • Mark all the multiples of all prime numbers remaining numbers are left Prime numbers
  • Till the maximum range of the Value
  • Print all the prime numbers in the Given Range

 

Example

 

Java




// Java Program to Implement wheel Sieve to Generate Prime
// Numbers Between Given Range
 
import java.io.*;
 
class GFG {
 
    // Maximum range
    static boolean max[] = new boolean[1000001];
    static void fill()
    {
        // Maximum Range
        int n = 1000000;
 
        // Mark all numbers as a prime
        for (int i = 2; i <= n; ++i) {
            max[i] = true;
        }
        for (int i = 2; i <= Math.sqrt(n); ++i) {
 
            // if number is prime
            if (max[i] == true) {
 
                // mark all the factors
                // of i non prime
                for (int j = i * i; j <= n; j += i) {
                    max[j] = false;
                }
            }
        }
    }
 
    static void range(int L, int R)
    {
        for (int i = L; i <= R; ++i) {
 
            // checking the prime number
            if (max[i] == true) {
                // print the prime number
                System.out.print(i + " ");
            }
        }
    }
    public static void main(String[] args)
    {
        // starting in a range
        int L = 20;
 
        // ending in a range
        int R = 40;
 
        // mark all the numbers
        fill();
 
        // printing the prime numbers in range
        range(L, R);
    }
}

 
 

Output

23 29 31 37

 

Approach 3: Using wheel Sieve to Generate all the Prime numbers. This approach is a very much optimized approach than discussed above approach. In this approach, we use the wheel Factorization method to find the prime numbers in a given range.

 

Example

 

Java




// Java program to check if the
// given number is prime using
// Wheel Factorization Method
 
import java.util.*;
 
class GFG {
 
    // Function to check if a given
    // number x is prime or not
    static boolean isPrime(int N)
    {
        boolean isPrime = true;
 
        // The Wheel for checking
        // prime number
        int[] arr = { 7, 11, 13, 17, 19, 23, 29, 31 };
 
        // Base Case
        if (N < 2) {
            isPrime = false;
        }
 
        // Check for the number taken
        // as basis
        if (N % 2 == 0 || N % 3 == 0 || N % 5 == 0) {
            isPrime = false;
        }
 
        // Check for Wheel
        // Here i, acts as the layer
        // of the wheel
        for (int i = 0; i < Math.sqrt(N); i += 30) {
 
            // Check for the list of
            // Sieve in arr[]
            for (int c : arr) {
 
                // If number is greater
                // than sqrt(N) break
                if (c > Math.sqrt(N)) {
                    break;
                }
 
                // Check if N is a multiple
                // of prime number in the
                // wheel
                else {
                    if (N % (c + i) == 0) {
                        isPrime = false;
                        break;
                    }
                }
 
                // If at any iteration
                // isPrime is false,
                // break from the loop
                if (!isPrime)
                    break;
            }
        }
 
        if (isPrime)
            return true;
        else
            return false;
    }
 
    // Driver's Code
    public static void main(String args[])
    {
 
        // Range
        int L = 10;
        int R = 20;
        for (int i = L; i <= R; ++i) {
 
            // Function call for primality
            // check
 
            // if true
            if (isPrime(i) == true) {
 
                // print the prime number
                System.out.print(i + " ");
            }
        }
    }
}

 
 

Output

11 13 17 19

 


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!