Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Java Program to Find a triplet such that sum of two equals to third element

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an array of integers, you have to find three numbers such that the sum of two elements equals the third element.
Examples:

Input: {5, 32, 1, 7, 10, 50, 19, 21, 2}
Output: 21, 2, 19

Input: {5, 32, 1, 7, 10, 50, 19, 21, 0}
Output: no such triplet exist

Question source: Arcesium Interview Experience | Set 7 (On campus for Internship)

Simple approach: Run three loops and check if there exists a triplet such that sum of two elements equals the third element.
Time complexity: O(n^3)
Efficient approach: The idea is similar to Find a triplet that sum to a given value.

  • Sort the given array first.
  • Start fixing the greatest element of three from the back and traverse the array to find the other two numbers which sum up to the third element.
  • Take two pointers j(from front) and k(initially i-1) to find the smallest of the two number and from i-1 to find the largest of the two remaining numbers
  • If the addition of both the numbers is still less than A[i], then we need to increase the value of the summation of two numbers, thereby increasing the j pointer, so as to increase the value of A[j] + A[k].
  • If the addition of both the numbers is more than A[i], then we need to decrease the value of the summation of two numbers, thereby decrease the k pointer so as to decrease the overall value of A[j] + A[k].

Below image is a dry run of the above approach:

Below is the implementation of the above approach:

Java




// Java program to find three numbers
// such that sum of two makes the
// third element in array
import java.util.Arrays;
 
public class GFG
{
    // Utility function for finding
    // triplet in array
    static void findTriplet(int arr[], int n)
    {
        // Sort the array
        Arrays.sort(arr);
 
        // For every element in arr check
        // if a pair exist(in array) whose
        // sum is equal to arr element
        for (int i = n - 1; i >= 0; i--)
        {
            int j = 0;
            int k = i - 1;
            while (j < k) {
                if (arr[i] == arr[j] + arr[k])
                {
                    // Pair found
                    System.out.println("numbers are " + arr[i] +
                                       " " + arr[j] + " " + arr[k]);
                    return;
                }
                else if (arr[i] > arr[j] + arr[k])
                    j += 1;
                else
                    k -= 1;
            }
        }
 
        // No such triplet is found in array
        System.out.println("No such triplet exists");
    }
 
    // Driver code
    public static void main(String args[])
    {
        int arr[] = {5, 32, 1, 7, 10,
                     50, 19, 21, 2};
        int n = arr.length;
        findTriplet(arr, n);
    }
}
// This code is contributed by Sumit Ghosh

C++




// C++ program to find three numbers
// such that sum of two makes the
// third element in array
#include <bits/stdc++.h>
using namespace std;
 
// Utility function for finding
// triplet in array
void findTriplet(int arr[], int n)
{
    // Sort the array
    sort(arr, arr + n);
    // For every element in arr check
    // if a pair exist(in array) whose
    // sum is equal to arr element
    for (int i = n - 1; i >= 0; i--) {
        int j = 0;
        int k = i - 1;
        while (j < k) {
            if (arr[i] == arr[j] + arr[k]) {
                // Pair found
                cout << "numbers are " << arr[i] << " "
                     << arr[j] << " " << arr[k];
                return;
            }
            else if (arr[i] > arr[j] + arr[k])
                j += 1;
            else
                k -= 1;
        }
    }
 
    // No such triplet is found in array
    cout << "No such triplet exists";
}
 
// Driver code
int main()
{
    int arr[] = { 5, 32, 1, 7, 10, 50, 19, 21, 2 };
    int n = sizeof(arr) / sizeof(arr[0]);
    findTriplet(arr, n);
    return 0;
}

C#




using System;
 
public class GFG
{
    // Utility function for finding
    // triplet in array
    static void findTriplet(int[] arr, int n)
    {
        // Sort the array
        Array.Sort(arr);
 
        // For every element in arr check
        // if a pair exist(in array) whose
        // sum is equal to arr element
        for (int i = n - 1; i >= 0; i--)
        {
            int j = 0;
            int k = i - 1;
            while (j < k)
            {
                if (arr[i] == arr[j] + arr[k])
                {
                    // Pair found
                    Console.WriteLine("numbers are " + arr[i] +
                                      " " + arr[j] + " " + arr[k]);
                    return;
                }
                else if (arr[i] > arr[j] + arr[k])
                    j += 1;
                else
                    k -= 1;
            }
        }
 
        // No such triplet is found in array
        Console.WriteLine("No such triplet exists");
    }
 
    // Driver code
    public static void Main(string[] args)
    {
        int[] arr = { 5, 32, 1, 7, 10,
                      50, 19, 21, 2 };
        int n = arr.Length;
        findTriplet(arr, n);
    }
}

Python3




# Python program to find three numbers
# such that sum of two makes the
# third element in array
 
def findTriplet(arr, n):
    # Sort the array
    arr.sort()
 
    # For every element in arr check
    # if a pair exist(in array) whose
    # sum is equal to arr element
    for i in range(n-1, -1, -1):
        j = 0
        k = i - 1
        while j < k:
            if arr[i] == arr[j] + arr[k]:
                # Pair found
                print("numbers are", arr[i], arr[j], arr[k])
                return
            elif arr[i] > arr[j] + arr[k]:
                j += 1
            else:
                k -= 1
 
    # No such triplet is found in array
    print("No such triplet exists")
 
# Driver code
if __name__ == '__main__':
    arr = [5, 32, 1, 7, 10, 50, 19, 21, 2]
    n = len(arr)
    findTriplet(arr, n)

Javascript




// JavaScript program to find three numbers
// such that sum of two makes the
// third element in array
 
function findTriplet(arr, n) {
    // Sort the array
    arr.sort(function(a, b) { return a - b });
 
    // For every element in arr check
    // if a pair exist(in array) whose
    // sum is equal to arr element
    for (var i = n - 1; i >= 0; i--) {
        var j = 0;
        var k = i - 1;
        while (j < k) {
            if (arr[i] == arr[j] + arr[k]) {
                // Pair found
                console.log("numbers are " + arr[i] + " " + arr[j] + " " + arr[k]);
                return;
            }
            else if (arr[i] > arr[j] + arr[k])
                j += 1;
            else
                k -= 1;
        }
    }
 
    // No such triplet is found in array
    console.log("No such triplet exists");
}
 
// Driver code
var arr = [5, 32, 1, 7, 10, 50, 19, 21, 2];
var n = arr.length;
findTriplet(arr, n);

Output

numbers are 21 2 19

Time complexity: O(N^2) 

Space Complexity: O(1) as no extra space has been used.

Please refer complete article on Find a triplet such that sum of two equals to third element for more details!


My Personal Notes arrow_drop_up
Last Updated : 20 Apr, 2023
Like Article
Save Article
Similar Reads
Related Tutorials