Given an array arr[] of size N, the task is to check if it is possible to convert all of the array elements to a pronic number by rotating the digits of array elements any number of times.
Examples:
Input: {321, 402, 246, 299}Â
Output: TrueÂ
Explanation:Â
arr[0] ? Right rotation once modifies arr[0] to 132 (= 11 × 12).Â
arr[1] ? Right rotation once modifies arr[0] to 240 (= 15 × 16).Â
arr[2] ? Right rotation twice modifies arr[2] to 462 (= 21 × 22).Â
arr[3] ? Right rotation twice modifies arr[3] to 992 (= 31 × 32).
Input: {433, 653, 402, 186}
Output: False
Approach: Follow the steps below to solve the problem:
- Traverse the array and check for each array element, whether it is possible to convert it to a pronic number.
- For each array element, apply all the possible rotations and check after each rotation, whether the generated number is pronic or not.
- If it is not possible to convert any array element to a pronic number, print “False”.
- Otherwise, print “True”.
Below is the implementation of the above approach:
Java
import java.io.*;
import java.lang.*;
import java.util.*;
class GFG {
static boolean isPronic( int x)
{
for ( int i = 0 ; i < ( int )(Math.sqrt(x)) + 1 ; i++) {
if (x == i * (i + 1 )) {
return true ;
}
}
return false ;
}
static boolean checkRot( int val)
{
String temp = Integer.toString(val);
for ( int i = 0 ; i < temp.length(); i++)
{
if (isPronic(Integer.parseInt(temp)) == true ) {
return true ;
}
temp = temp.substring( 1 ) + temp.charAt( 0 );
}
return false ;
}
static boolean check( int arr[], int N)
{
for ( int i = 0 ; i < N; i++)
{
if (checkRot(arr[i]) == false )
{
return false ;
}
}
return true ;
}
public static void main(String[] args)
{
int arr[] = { 321 , 402 , 246 , 299 };
int N = arr.length;
System.out.println(
(check(arr, N) ? "True" : "False" ));
}
}
|
Time Complexity: O(N3/2)
Auxiliary Space: O(1)
Please refer complete article on Check if all array elements can be converted to pronic numbers by rotating digits for more details!
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
27 Jan, 2022
Like Article
Save Article