Java program to check if a number is prime or not
Given a positive integer, check if the number is prime or not. A prime is a natural number greater than 1 that has no positive divisors other than 1 and itself. For example 2, 3, 5, 7, 11,….. are prime numbers.
Examples
Input: n = 11
Output: trueInput: n = 15
Output: false
Simple Method
A simple solution is to iterate through all numbers from 2 to n – 1 and for every number check if it divides n. If we find any number that divides, we return false.
Below is the Java program to implement the above approach:
Java
// Java Program to demonstrate // Brute Force Method // to check if a number is prime class GFG { static boolean isPrime( int n) { // Corner case if (n <= 1 ) return false ; // Check from 2 to n-1 for ( int i = 2 ; i < n; i++) if (n % i == 0 ) return false ; return true ; } // Driver Program public static void main(String args[]) { if (isPrime( 11 )) System.out.println( " true" ); else System.out.println( " false" ); if (isPrime( 15 )) System.out.println( " true" ); else System.out.println( " false" ); } } |
true false
Time complexity: O(n)
Improved Method
In this method, the check is done from 2 to n/2 as a number is not divisible by more than half its value.
Below is a Java program to implement the approach:
Java
// JAVA program to demonstrate // Improved method // to check if a number is prime import java.util.Scanner; // Driver Class class GFG { static boolean isPrime( int n) { // Corner case if (n <= 1 ) return false ; // Check from 2 to n/2 for ( int i = 2 ; i <= n / 2 ; i++) if (n % i == 0 ) return false ; return true ; } // Driver Program public static void main(String args[]) { if (isPrime( 11 )) System.out.println( " true" ); else System.out.println( " false" ); if (isPrime( 15 )) System.out.println( " true" ); else System.out.println( " false" ); } } |
true false
Optimized Method
Instead of checking till n, we can check till √n because a larger factor of n must be a multiple of a smaller factor that has been already checked.
Below is the Java program to implement the above approach:
java
// Java Program to demonstrate // Optimized method // to check if a number is prime import java.util.Scanner; class GFG { static boolean isPrime( int n) { // Corner case if (n <= 1 ) return false ; // Check from 2 to sqrt(n) for ( int i = 2 ; i < Math.sqrt(n); i++) if (n % i == 0 ) return false ; return true ; } // Driver Program public static void main(String args[]) { if (isPrime( 11 )) System.out.println( " true" ); else System.out.println( " false" ); if (isPrime( 15 )) System.out.println( " true" ); else System.out.println( " false" ); } } |
true false
Most Optimized Method
The algorithm can be improved further by observing that all primes are of the form 6k ± 1, with the exception of 2 and 3. This is because all integers can be expressed as (6k + i) for some integer k and for i = -1, 0, 1, 2, 3, or 4.
Note:
2 divides (6k + 0), (6k + 2), (6k + 4)
3 divides (6k + 3)
So, a more efficient method is to test if n is divisible by 2 or 3, then to check through all the numbers of form 6k ± 1 ≤ √n. This approach is 3 times faster than testing all numbers up to √n.
Below is the Java program to implement the above approach:
java
// JAVA program to demonstrate // Optimized method based // to check if a number is prime import java.util.Scanner; class GFG { static boolean isPrime( int n) { // Corner case if (n <= 1 ) return false ; if (n == 2 || n == 3 ) return true ; if (n % 2 == 0 || n % 3 == 0 ) return false ; for ( int i = 5 ; i <= Math.sqrt(n); i = i + 6 ) if (n % i == 0 || n % (i + 2 ) == 0 ) return false ; return true ; } // Driver Program public static void main(String args[]) { if (isPrime( 11 )) System.out.println( " true" ); else System.out.println( " false" ); if (isPrime( 15 )) System.out.println( " true" ); else System.out.println( " false" ); } } |
true false
Please Login to comment...