Java Program for Radix Sort
The Radix Sort Algorithm
- Do the following for each digit i where i varies from the least significant digit to the most significant digit.
- Sort input array using counting sort (or any stable sort) according to the ith digit.
java
// Radix sort Java implementation import java.io.*; import java.util.*; class Radix { // A utility function to get maximum value in arr[] static int getMax( int arr[], int n) { int mx = arr[ 0 ]; for ( int i = 1 ; i < n; i++) if (arr[i] > mx) mx = arr[i]; return mx; } // A function to do counting sort of arr[] according to // the digit represented by exp. static void countSort( int arr[], int n, int exp) { int output[] = new int [n]; // output array int i; int count[] = new int [ 10 ]; Arrays.fill(count, 0 ); // Store count of occurrences in count[] for (i = 0 ; i < n; i++) count[ (arr[i]/exp)% 10 ]++; // Change count[i] so that count[i] now contains // actual position of this digit in output[] for (i = 1 ; i < 10 ; i++) count[i] += count[i - 1 ]; // Build the output array for (i = n - 1 ; i >= 0 ; i--) { output[count[ (arr[i]/exp)% 10 ] - 1 ] = arr[i]; count[ (arr[i]/exp)% 10 ]--; } // Copy the output array to arr[], so that arr[] now // contains sorted numbers according to current digit for (i = 0 ; i < n; i++) arr[i] = output[i]; } // The main function to that sorts arr[] of size n using // Radix Sort static void radixsort( int arr[], int n) { // Find the maximum number to know number of digits int m = getMax(arr, n); // Do counting sort for every digit. Note that instead // of passing digit number, exp is passed. exp is 10^i // where i is current digit number for ( int exp = 1 ; m/exp > 0 ; exp *= 10 ) countSort(arr, n, exp); } // A utility function to print an array static void print( int arr[], int n) { for ( int i= 0 ; i<n; i++) System.out.print(arr[i]+ " " ); } /*Driver function to check for above function*/ public static void main (String[] args) { int arr[] = { 170 , 45 , 75 , 90 , 802 , 24 , 2 , 66 }; int n = arr.length; radixsort(arr, n); print(arr, n); } } /* This code is contributed by Devesh Agrawal */ |
Output
2 24 45 66 75 90 170 802
Time Complexity: O(n*d), Here d =10
Auxiliary Space: O(n)
Please refer complete article on Radix Sort for more details!
Please Login to comment...