Skip to content
Related Articles

Related Articles

Improve Article

Program for Find sum of odd factors of a number

  • Last Updated : 21 May, 2021

Given a number n, the task is to find the odd factor sum.
Examples: 
 

Input : n = 30
Output : 24
Odd dividers sum 1 + 3 + 5 + 15 = 24 

Input : 18
Output : 13
Odd dividers sum 1 + 3 + 9 = 13

Let p1, p2, … pk be prime factors of n. Let a1, a2, .. ak be highest powers of p1, p2, .. pk respectively that divide n, i.e., we can write n as n = (p1a1)*(p2a2)* … (pkak)
 

Sum of divisors = (1 + p1 + p12 ... p1a1) * 
                  (1 + p2 + p22 ... p2a2) *
                  .............................................
                  (1 + pk + pk2 ... pkak) 

To find sum of odd factors, we simply need to ignore even factors and their powers. For example, consider n = 18. It can be written as 2132 and sun of all factors is (1)*(1 + 2)*(1 + 3 + 32). Sum of odd factors (1)*(1+3+32) = 13.
To remove all even factors, we repeatedly divide n while it is divisible by 2. After this step, we only get odd factors. Note that 2 is the only even prime.
 

C++




// Formula based Java program
// to find sum of all divisors
// of n.
#include <iostream>
#include <cmath>
using namespace std;
 
// Returns sum of all
// factors of n.
int sumofoddFactors(int n)
{
    // Traversing through
    // all prime factors.
    int res = 1;
 
    // ignore even factors by
    // removing all powers
    // of 2
    while (n % 2 == 0)
        n = n / 2;
 
    for (int i = 3;
             i <= sqrt(n); i++)
    {
 
        // While i divides n,
        // print i and divide n
        int count = 0, curr_sum = 1;
        int curr_term = 1;
        while (n % i == 0)
        {
            count++;
            n = n / i;
            curr_term *= i;
            curr_sum += curr_term;
        }
        res *= curr_sum;        
    }
 
    // This condition is to handle
    // the case when n is a
    // prime number.
    if (n >= 2)
        res *= (1 + n);
 
    return res;
}
 
// Driver code
int main()
{
    int n = 30;
    cout << sumofoddFactors(n);
    return 0;
}
// This code is contributed by
// Manish Shaw(manishshaw1)

Java




// Formula based Java program
// to find sum of all divisors
// of n.
import java.io.*;
import java.math.*;
 
class GFG {
     
    // Returns sum of all
    // factors of n.
    static int sumofoddFactors(int n)
    {
        // Traversing through
        // all prime factors.
        int res = 1;
     
        // ignore even factors by
        // removing all powers
        // of 2
        while (n % 2 == 0)
            n = n / 2;
     
        for (int i = 3; i <= Math.sqrt(n); i++)
        {
     
            // While i divides n, print i
            // and divide n
            int count = 0, curr_sum = 1;
            int curr_term = 1;
            while (n % i == 0)
            {
                count++;
     
                n = n / i;
     
                curr_term *= i;
                curr_sum += curr_term;
            }
     
            res *= curr_sum;
             
        }
     
        // This condition is to handle
        // the case when n is a
        // prime number.
        if (n >= 2)
            res *= (1 + n);
     
        return res;
    }
     
    // Driver code
    public static void main(String args[])
                        throws IOException
    {
        int n = 30;
        System.out.println(sumofoddFactors(n));
    }
}
 
/* This code is contributed by Nikita Tiwari.*/

Python3




# Formula based Python program
# to find sum of all divisors
# of n.
import math
 
# Returns sum of all
# factors of n.
def sumofoddFactors(n) :
 
    # Traversing through
    # all prime factors.
    res = 1
 
    # ignore even factors by
    # removing all powers
    # of 2
    while (n % 2 == 0) :
        n = int(n / 2)
 
    for i in range(3, int(math.sqrt(n)) + 1) :
         
        # While i divides n,
        # pri and divide n
        count = 0
        curr_sum = 1
        curr_term = 1
        while (n % i == 0) :
         
            count = count + 1
            n = int(n / i)
            curr_term *= i
            curr_sum = curr_sum + curr_term
                 
        res = res * curr_sum        
     
    # This condition is to
    # handle the case when
    # n is a prime number.
    if (n >= 2) :
        res = res * (1 + n)
 
    return res
 
# Driver code
n = 30
print (sumofoddFactors(n))
 
# This code is contributed by
# Manish Shaw(manishshaw1)

C#




// Formula based C# program to find sum
// of all divisors of n.
using System;
 
class GFG {
     
    // Returns sum of all factors of n.
    static int sumofoddFactors(int n)
    {
         
        // Traversing through
        // all prime factors.
        int res = 1;
     
        // ignore even factors by
        // removing all powers
        // of 2
        while (n % 2 == 0)
            n = n / 2;
     
        for (int i = 3; i <= Math.Sqrt(n); i++)
        {
     
            // While i divides n, print i
            // and divide n
            int count = 0, curr_sum = 1;
            int curr_term = 1;
            while (n % i == 0)
            {
                count++;
     
                n = n / i;
     
                curr_term *= i;
                curr_sum += curr_term;
            }
     
            res *= curr_sum;
             
        }
     
        // This condition is to handle
        // the case when n is a
        // prime number.
        if (n >= 2)
            res *= (1 + n);
     
        return res;
    }
     
    // Driver code
    public static void Main()
                         
    {
        int n = 30;
         
        Console.Write(sumofoddFactors(n));
    }
 
}
 
// This code is contributed by nitin mittal.

PHP




<?php
// Formula based PHP program
// to find sum of all divisors
// of n.
 
// Returns sum of all
// factors of n.
function sumofoddFactors($n)
{
    // Traversing through
    // all prime factors.
    $res = 1;
 
    // ignore even factors by
    // removing all powers
    // of 2
    while ($n % 2 == 0)
        $n = intval($n / 2);
 
    for ($i = 3;
         $i <= sqrt($n); $i++)
    {
 
        // While i divides n,
        // pr$i and divide n
        $count = 0;
        $curr_sum = 1;
        $curr_term = 1;
        while ($n % $i == 0)
        {
            $count++;
            $n = intval($n / $i);
            $curr_term *= $i;
            $curr_sum += $curr_term;
        }
         
        $res *= $curr_sum;        
    }
 
    // This condition is to
    // handle the case when
    // n is a prime number.
    if ($n >= 2)
        $res *= (1 + $n);
 
    return $res;
}
 
// Driver code
$n = 30;
echo (sumofoddFactors($n));
 
// This code is contributed by
// Manish Shaw(manishshaw1)
?>

Javascript




<script>
 
    // Formula based Javascript program
    // to find sum of all divisors
    // of n.
 
    // Returns sum of all
    // factors of n.
      function sumofoddFactors(n)
    {
        // Traversing through
        // all prime factors.
        let res = 1;
 
        // ignore even factors by
        // removing all powers
        // of 2
        while (n % 2 == 0)
            n = n / 2;
 
        for (let i = 3; i <= n; i++)
        {
 
            // While i divides n,
            // print i and divide n
            let count = 0, curr_sum = 1;
            let curr_term = 1;
            while (n % i == 0)
            {
                count++;
                n = n / i;
                curr_term *= i;
                curr_sum += curr_term;
            }
            res *= curr_sum;       
        }
 
        // This condition is to handle
        // the case when n is a
        // prime number.
        if (n >= 2)
            res *= (1 + n);
 
        return res;
    }
 
    let n = 30;
    document.write(sumofoddFactors(n));
 
</script>

Output: 
 

24

Please refer complete article on Find sum of odd factors of a number for more details!
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :