Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Java Program for Check whether all the rotations of a given number is greater than or equal to the given number or not

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an integer x, the task is to find if every k-cycle shift on the element produces a number greater than or equal to the same element. 
A k-cyclic shift of an integer x is a function that removes the last k digits of x and inserts them in its beginning. 
For example, the k-cyclic shifts of 123 are 312 for k=1 and 231 for k=2. Print Yes if the given condition is satisfied else print No.
Examples: 
 

Input: x = 123 
Output : Yes 
The k-cyclic shifts of 123 are 312 for k=1 and 231 for k=2. 
Both 312 and 231 are greater than 123.
Input: 2214 
Output: No 
The k-cyclic shift of 2214 when k=2 is 1422 which is smaller than 2214 
 

 

Approach: Simply find all the possible k cyclic shifts of the number and check if all are greater than the given number or not.
Below is the implementation of the above approach: 
 

Java




// Java implementation of the approach
class GFG
{
 
    static void CheckKCycles(int n, String s)
    {
        boolean ff = true;
        int x = 0;
        for (int i = 1; i < n; i++)
        {
 
            // Splitting the number at index i
            // and adding to the front
            x = (s.substring(i) + s.substring(0, i)).length();
 
            // Checking if the value is greater than
            // or equal to the given value
            if (x >= s.length())
            {
                continue;
            }
            ff = false;
            break;
        }
        if (ff)
        {
            System.out.println("Yes");
        }
        else
        {
            System.out.println("No");
        }
 
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 3;
        String s = "123";
        CheckKCycles(n, s);
    }
}
 
/* This code contributed by PrinciRaj1992 */

Output: 

Yes

 

Time Complexity: O(N2), where N represents the length of the given string.

The time complexity of the program is O(N2) because first it runs a loop for traversing the string and inside that substring function is used.

Auxiliary Space: O(1), no extra space is required, so it is a constant.

Approach 2:

  • Here’s another approach to solve the same problem:
  • Iterate through all possible k values from 1 to n/2.
  • For each k value, check if the string can be split into k cycles of length n/k. To do this, compare the substring of the original string from 0 to n/k with the substring of the original string from i*(n/k) to (i+1)*(n/k), for all i from 1 to k-1.
  • If the string can be split into k cycles of length n/k, then it satisfies the given condition. Return “Yes”.
  • If the string cannot be split into any cycles, then return “No”.
  • Here’s the Java implementation of this approach:

Java




public class Main {
    public static String hasKCycles(int n, String s) {
        for (int k = 1; k <= n/2; k++) {
            if (n % k != 0) {
                continue;
            }
 
            int len = n/k;
            boolean flag = true;
 
            for (int i = 1; i < k; i++) {
                if (!s.substring((i-1)*len, i*len).equals(s.substring(i*len, (i+1)*len))) {
                    flag = false;
                    break;
                }
            }
 
            if (flag) {
                return "Yes";
            }
        }
 
        return "No";
    }
 
    public static void main(String[] args) {
        int n = 3;
        String s = "123";
        System.out.println(hasKCycles(n, s));
    }
}

Output:

Yes

Time Complexity: O(N^2), where N represents the length of the given string.

Auxiliary Space: O(1), no extra space is required, so it is a constant.

Please refer complete article on Check whether all the rotations of a given number is greater than or equal to the given number or not for more details!


My Personal Notes arrow_drop_up
Last Updated : 12 Apr, 2023
Like Article
Save Article
Similar Reads
Related Tutorials