Open In App

Java.lang.StrictMath class in Java | Set 1

Improve
Improve
Like Article
Like
Save
Share
Report

StrictMath Class methods helps to perform the numeric operations like square, square root, cube, cube root, exponential and trigonometric operations

Declaration :

public final class StrictMath
   extends Object

NaN argument?
A constant holding a Not-a-Number (NaN) value of type double. It is equivalent to the value returned by Double.longBitsToDouble(0x7ff8000000000000L).

Methods of lang.math class :
1. acos() : java.lang.StrictMath.acos() method returns the arc cosine value of the passed argument.
arc cosine is inverse cosine of the argument passed.
acos(arg) = cos-1 of arg

Special Case : Result is NaN, if the argument is NaN or its absolute value is greater than 1. 

Syntax:

public static double acos(double a)
Parameters:
a - the argument whose arc cosine value we need.
    argument is taken as radian    
Returns:
arc cosine value of the argument.

2. abs() : java.lang.StrictMath.abs() method returns the absolute value of any type of the argument passed. This method can handle all the data types.

  • Result is positive zero, if the argument is positive zero or negative zero.
  • Result is positive infinity if the argument is infinite.
  • Result is NaN, if passed argument is NaN.

Syntax:

public static datatype abs(datatype arg)
Parameters:
arg - the argument whose absolute value we need
Returns:
absolute value of the passed argument.

3. toRadians() : java.lang.StrictMath.toRadians(double deg) method converts argument (degree) to radians.
Note: StrictMath class usually takes radians as an input which is very much different in real life applications since angles is usually represented in degrees. 

Syntax:

public static double toRadians(double deg)
Parameters:
deg - degree angle needs to be in radian.
Returns:
radians equivalent of the degree-argument passed.

Java code explaining abs(), acos(), toRadians() method in lang.StrictMath class. 

Java




// Java program explaining lang.StrictMath class methods
// abs(), acos(), toRadians()
  
import java.lang.*;
public class NewClass
{
    public static void main(String[] args)
    {
        // Declaring the variables
        int Vali = -1;
        float Valf = .5f;
  
        // Printing the values
        System.out.println("Initial value of int  : " + Vali);
        System.out.println("Initial value of int  : " + Valf);
  
  
        // Use of .abs() method to get the absoluteValue
        int Absi = StrictMath.abs(Vali);
        float Absf = StrictMath.abs(Valf);
  
        System.out.println("Absolute value of int : " + Absi);
        System.out.println("Absolute value of int : " + Absf);
        System.out.println("");
  
        // Use of acos() method
        // Value greater than 1, so passing NaN
        double Acosi = StrictMath.acos(60);
        System.out.println("acos value of Acosi : " + Acosi);
        double x = StrictMath.PI;
  
        // Use of toRadian() method
        x = StrictMath.toRadians(x);
        double Acosj = StrictMath.acos(x);
        System.out.println("acos value of Acosj : " + Acosj);
          
    }
}


Output :

Initial value of int  : -1
Initial value of int  : 0.5
Absolute value of int : 1
Absolute value of int : 0.5

acos value of Acosi : NaN
acos value of Acosj : 1.5159376794536454

4. cbrt() : java.lang.StrictMath.cbrt() method returns the cube root of the passed argument. 

Special Point : 

  • Result is NaN, if the argument is NaN.
  • Result is an infinity with the same sign as the argument if the argument is infinite.
  • Result is a zero, if the argument is zero.

Syntax:

public static double cbrt(double arg)
Parameters:
arg - argument passed. 
Returns:
cube root of the argument passed

5. asin() : java.lang.StrictMath.asin() method returns the arc sine value of the method argument passed. Returned angle is in the range -pi/2 to pi/2. 
arc sine is inverse sine of the argument passed.
asin(arg) = sine-1 of arg

Special Case : 

  • Result is NaN, if the argument is NaN or its absolute value is greater than 1.
  • Result is a zero, if the argument is zero.

Syntax:

public static double asin(double arg)
Parameters:
arg - argument passed. 
Returns:
arc sine of the argument passed.

Java code explaining asin(), cbrt() method in lang.StrictMath class.

Java




// Java program explaining lang.StrictMath class methods
// asin(), cbrt()
  
import java.lang.*;
public class NewClass
{
  
    public static void main(String[] args)
    {
        int a = 1, b = 8;
        int radd = a + b;
  
        // Use of asin() method
        // Value greater than 1, so passing NaN
        double Asini = StrictMath.asin(radd);
        System.out.println("asin value of Asini : " + Asini);
        double x = StrictMath.PI;
  
        // Use of toRadian() method
        x = StrictMath.toRadians(x);
        double Asinj = StrictMath.asin(x);
        System.out.println("asin value of Asinj : " + Asinj);
        System.out.println("");
  
        // Use of cbrt() method
        double cbrtval = StrictMath.cbrt(216);
        System.out.println("cube root : " + cbrtval);
  
    }
}


Output : 

asin value of Asini : NaN
asin value of Asinj : 0.054858647341251204

cube root : 6.0

6. log() : java.lang.StrictMath.log() method returns the logarithmic value of the passed argument. 

Syntax:
public static double log(double arg)
Parameters:
arg - argument passed. 
Returns:
logarithmic value of the argument passed.

7. hypot() : java.lang.StrictMath.hypot(double p, double b) method returns hypotenuse of a right triangle on passing the triangle’s base and perpendicular as arguments.
hypotenuse = [perpendicular2 + base2]1/2

Important Point : 

  • If either argument is infinite, then the result is positive infinity.
  • If either argument is NaN and neither argument is infinite, then the result is NaN.
Syntax:
public static double hypot(double p, double b)
Parameters:
p - perpendicular of the right triangle
b - base of the right triangle
Returns:
hypotenuse of the right triangle

8. floor() : java.lang.StrictMath.floor() method returns the floor value of an argument i.e. the closest integer value which is either less or equal to the passed argument.
eg : 101.23 has floor value = 101

Important point : Same argument is resulted if  passed an NaN or infinite argument.

Syntax:
public static double floor(double arg)
Parameters:
arg - the argument whose floor value we need
Returns:closest possible value that is either less than 
                or equal to the argument passed

9. IEEEremainder() : java.lang.StrictMath.IEEERemainder(double d1, double d2) method returns the remainder value by applying remainder operation on two arguments w.r.t IEEE 754 standard. 
Remainder value = d1 – d2 * n
where,
n = closest exact value of d1/d2 

Syntax:
public static double IEEEremainder(double d1, double d2)
Parameters:
d1 - dividend 
d2 - divisor
Returns:
remainder when f1(dividend) is divided by(divisor)

Java code explaining floor(), hypot(), IEEEremainder(), log() method in lang.StrictMath class. 

Java




// Java program explaining lang.MATH class methods
// floor(), hypot(), IEEEremainder(), log()
  
import java.lang.*;
public class NewClass
{
  
    public static void main(String[] args)
    {
        // Use of floor method
        double f1 = 30.56, f2 = -56.34;
        f1 = StrictMath.floor(f1);
        System.out.println("Floor value of f1 : " + f1);
  
        f2 = StrictMath.floor(f2);
        System.out.println("Floor value of f2 : "  + f2);
        System.out.println("");
  
        // Use of hypot() method
        double p = 12, b = -5;
        double h = StrictMath.hypot(p, b);
        System.out.println("Hypotenuse : "+h);
        System.out.println("");
  
        // Use of IEEEremainder() method
        double d1 = 105, d2 = 2;
        double r = StrictMath.IEEEremainder(d1, d2);
        System.out.println("Remainder : " + r);
        System.out.println("");
          
        // Use of log() method
        double l = 10;
        l = StrictMath.log(l);
        System.out.println("Log value of 10 : " + l);
          
    }
}


Output : 

Floor value of f1 : 30.0
Floor value of f2 : -57.0

Hypotenuse : 13.0

Remainder : 1.0

Log value of 10 : 2.302585092994046

10. ceil() : java.lang.StrictMath.ceil(double a) method returns the smallest possible value which is either greater or equal to the argument passed. The returned value is a mathematical integer.

  • Result is same, if the returned value is already a mathematical integer.
  • Result is same, if the passed argument is NaN or infinite or zero.
  • Result is negative zero, if the passed argument is less than zero but greater than -1.0

Syntax:

public static double ceil(double arg)
Parameters:
arg - the argument value
Returns:
smallest possible value(mathematical integer)
which is either greater or equal to the argument passed

11. copySign() : java.lang.StrictMath.copySign() method returns first floating-point argument but having the sign of second argument.

Syntax:

public static double copySign(double m, double s)
                    or
public static float copySign(float m, float s)
Parameters:
m - magnitude 
s - sign 
Returns:
returns second argument with sign of first floating-point argument.

12. atan() : java.lang.StrictMath.atan() method returns returns the arc tangent of the method argument value. The returned angle is in the range -pi/2 through pi/2.
arc tan is inverse tan of the argument passed.
atan(arg) = tan inverse of arg

Special Case : 

  • Result is NaN, if the passed argument is NaN or its absolute value is > 1.
  • Result is zero, if argument is zero.

Syntax:

public static double atan(double a)
Parameters:
a - the argument whose arc tangent value we need.
    argument is taken as radian
Returns:
arc tan value of the argument.

Java code explaining atan(), ceil(), copySign() method in lang.StrictMath class. 

Java




// Java program explaining lang.StrictMath class methods
// atan(), ceil(), copySign()
  
import java.math.*;
public class NewClass
{
    public static void main(String[] args)
    {
        // Use of atan() method
        double Atani = StrictMath.atan(0);
        System.out.println("atan value of Atani : " + Atani);
        double x = StrictMath.PI / 2;
  
        // Use of toRadian() method
        x = StrictMath.toRadians(x);
        double Atanj = StrictMath.atan(x);
        System.out.println("atan value of Atanj : " + Atanj);
        System.out.println("");
  
  
        // Use of ceil() method
        double val = 15.34, ceilval;
        ceilval = StrictMath.ceil(val);
        System.out.println("ceil value of val : " + ceilval);
        System.out.println("");
  
        double dblMag = val;
        double dblSign1 = 3;
        double dblSign2 = -3;
  
  
        // Use of copySign() method
        double result1 = StrictMath.copySign(dblMag, dblSign1);
        System.out.println("copySign1 : " + result1);
  
        double result2 = StrictMath.copySign(dblMag, dblSign2);
        System.out.println("copySign2 : " + result2);
          
    }
}


Output : 

atan value of Atani : 0.0
atan value of Atanj : 0.0274087022410345

ceil value of val : 16.0

copySign1 : 15.34
copySign2 : -15.34

Refer more methods of lang.StrictMath class at : JAva.lang.StrictMath class in Java | Set 2

 



Last Updated : 15 Sep, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads