Iterative program to count leaf nodes in a Binary Tree
Given a binary tree, count leaves in the tree without using recursion. A node is a leaf node if both left and right children of it are NULL.
Example Tree
Leaves count for the above tree is 3.
The idea is to use level order traversal. During traversal, if we find a node whose left and right children are NULL, we increment count.
Implementation:
C++
// C++ program to count leaf nodes in a Binary Tree #include <bits/stdc++.h> using namespace std; /* A binary tree Node has data, pointer to left child and a pointer to right child */ struct Node { int data; struct Node* left, *right; }; /* Function to get the count of leaf Nodes in a binary tree*/ unsigned int getLeafCount( struct Node* node) { // If tree is empty if (!node) return 0; // Initialize empty queue. queue<Node *> q; // Do level order traversal starting from root int count = 0; // Initialize count of leaves q.push(node); while (!q.empty()) { struct Node *temp = q.front(); q.pop(); if (temp->left != NULL) q.push(temp->left); if (temp->right != NULL) q.push(temp->right); if (temp->left == NULL && temp->right == NULL) count++; } return count; } /* Helper function that allocates a new Node with the given data and NULL left and right pointers. */ struct Node* newNode( int data) { struct Node* node = new Node; node->data = data; node->left = node->right = NULL; return (node); } /* Driver program to test above functions*/ int main() { /* 1 / \ 2 3 / \ 4 5 Let us create Binary Tree shown in above example */ struct Node *root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); /* get leaf count of the above created tree */ cout << getLeafCount(root); return 0; } |
Java
// Java program to count leaf nodes // in a Binary Tree import java.util.*; class GFG { /* A binary tree Node has data, pointer to left child and a pointer to right child */ static class Node { int data; Node left, right; } /* Function to get the count of leaf Nodes in a binary tree*/ static int getLeafCount(Node node) { // If tree is empty if (node == null ) { return 0 ; } // Initialize empty queue. Queue<Node> q = new LinkedList<>(); // Do level order traversal starting from root int count = 0 ; // Initialize count of leaves q.add(node); while (!q.isEmpty()) { Node temp = q.peek(); q.poll(); if (temp.left != null ) { q.add(temp.left); } if (temp.right != null ) { q.add(temp.right); } if (temp.left == null && temp.right == null ) { count++; } } return count; } /* Helper function that allocates a new Node with the given data and null left and right pointers. */ static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return (node); } // Driver Code public static void main(String[] args) { { /* 1 / \ 2 3 / \ 4 5 Let us create Binary Tree shown in above example */ Node root = newNode( 1 ); root.left = newNode( 2 ); root.right = newNode( 3 ); root.left.left = newNode( 4 ); root.left.right = newNode( 5 ); /* get leaf count of the above created tree */ System.out.println(getLeafCount(root)); } } } // This code is contributed by Rajput-Ji |
Python3
# Python3 program to count leaf nodes # in a Binary Tree from queue import Queue # Helper function that allocates a new # Node with the given data and None # left and right pointers. class newNode: def __init__( self , data): self .data = data self .left = self .right = None # Function to get the count of leaf # Nodes in a binary tree def getLeafCount(node): # If tree is empty if ( not node): return 0 # Initialize empty queue. q = Queue() # Do level order traversal # starting from root count = 0 # Initialize count of leaves q.put(node) while ( not q.empty()): temp = q.queue[ 0 ] q.get() if (temp.left ! = None ): q.put(temp.left) if (temp.right ! = None ): q.put(temp.right) if (temp.left = = None and temp.right = = None ): count + = 1 return count # Driver Code if __name__ = = '__main__' : # 1 # / \ # 2 3 # / \ # 4 5 # Let us create Binary Tree shown # in above example root = newNode( 1 ) root.left = newNode( 2 ) root.right = newNode( 3 ) root.left.left = newNode( 4 ) root.left.right = newNode( 5 ) # get leaf count of the above # created tree print (getLeafCount(root)) # This code is contributed by PranchalK |
C#
// C# program to count leaf nodes // in a Binary Tree using System; using System.Collections.Generic; class GFG { /* A binary tree Node has data, pointer to left child and a pointer to right child */ public class Node { public int data; public Node left, right; } /* Function to get the count of leaf Nodes in a binary tree*/ static int getLeafCount(Node node) { // If tree is empty if (node == null ) { return 0; } // Initialize empty queue. Queue<Node> q = new Queue<Node>(); // Do level order traversal starting from root int count = 0; // Initialize count of leaves q.Enqueue(node); while (q.Count!=0) { Node temp = q.Peek(); q.Dequeue(); if (temp.left != null ) { q.Enqueue(temp.left); } if (temp.right != null ) { q.Enqueue(temp.right); } if (temp.left == null && temp.right == null ) { count++; } } return count; } /* Helper function that allocates a new Node with the given data and null left and right pointers. */ static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return (node); } // Driver Code public static void Main(String[] args) { { /* 1 / \ 2 3 / \ 4 5 Let us create Binary Tree shown in above example */ Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); /* get leaf count of the above created tree */ Console.WriteLine(getLeafCount(root)); } } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript program to count leaf nodes // in a Binary Tree /* A binary tree Node has data, pointer to left child and a pointer to right child */ class Node { /* Helper function that allocates a new Node with the given data and null left and right pointers. */ constructor(data) { this .data=data; this .left= this .right= null ; } } /* Function to get the count of leaf Nodes in a binary tree*/ function getLeafCount(node) { // If tree is empty if (node == null ) { return 0; } // Initialize empty queue. let q = []; // Do level order traversal starting from root let count = 0; // Initialize count of leaves q.push(node); while (q.length!=0) { let temp = q.shift(); if (temp.left != null ) { q.push(temp.left); } if (temp.right != null ) { q.push(temp.right); } if (temp.left == null && temp.right == null ) { count++; } } return count; } /* 1 / \ 2 3 / \ 4 5 Let us create Binary Tree shown in above example */ let root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); /* get leaf count of the above created tree */ document.write(getLeafCount(root)); // This code is contributed by unknown2108 </script> |
3
Time Complexity: O(n)
Auxiliary space: O(n)
Here is a recursive solution for the same problem:
The idea is simple we break the larger tree into smaller sub-trees and solve for them to get the final answer.
Below is the implementation of the above approach.
C++
// C++ Program for above approach #include <iostream> using namespace std; // Node class struct node { int data; struct node* left; struct node* right; }; // Program to count leaves int countLeaves( struct node *node) { // If the node itself is "null" // return 0, as there // are no leaves if (node == NULL) { return 0; } // It the node is a leaf then // both right and left // children will be "null" if (node->left == NULL && node->right == NULL) { return 1; } // Now we count the leaves in // the left and right // subtrees and return the sum return countLeaves(node->left) + countLeaves(node->right); } // Class newNode of Node type struct node* newNode( int data) { struct node* node = ( struct node*) malloc ( sizeof ( struct node)); node->data = data; node->left = NULL; node->right = NULL; return (node); } // Driver Code int main() { struct node *root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); /* get leaf count of the above created tree */ cout<<countLeaves(root)<<endl; } // This code is contributed by rag2127 |
Java
// Java Program for above approach import java.util.LinkedList; import java.util.Queue; import java.io.*; import java.util.*; class GfG { // Node class static class Node { int data; Node left, right; } // Program to count leaves static int countLeaves(Node node) { // If the node itself is "null" // return 0, as there // are no leaves if (node == null ) return 0 ; // It the node is a leaf then // both right and left // children will be "null" if (node.left == null && node.right == null ) return 1 ; // Now we count the leaves in // the left and right // subtrees and return the sum return countLeaves(node.left) + countLeaves(node.right); } // Class newNode of Node type static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return (node); } // Driver Code public static void main(String[] args) { Node root = newNode( 1 ); root.left = newNode( 2 ); root.right = newNode( 3 ); root.left.left = newNode( 4 ); root.left.right = newNode( 5 ); /* get leaf count of the above created tree */ System.out.println(countLeaves(root)); } } //Code by Rounik Prashar |
Python3
# Python3 Program for above approach # Node class class Node: def __init__( self ,x): self .data = x self .left = None self .right = None # Program to count leaves def countLeaves(node): # If the node itself is "None" # return 0, as there # are no leaves if (node = = None ): return 0 # It the node is a leaf then # both right and left # children will be "None" if (node.left = = None and node.right = = None ): return 1 # Now we count the leaves in # the left and right # subtrees and return the sum return countLeaves(node.left) + countLeaves(node.right) # Driver Code if __name__ = = '__main__' : root = Node( 1 ) root.left = Node( 2 ) root.right = Node( 3 ) root.left.left = Node( 4 ) root.left.right = Node( 5 ) # /* get leaf count of the above # created tree */ print (countLeaves(root)) # This code is contributed by mohit kumar 29 |
C#
// C# Program for above approach using System; // Node class public class Node { public int data; public Node left, right; public Node( int d) { data = d; left = right = null ; } } public class BinaryTree{ public static Node root; // Program to count leaves static int countLeaves(Node node) { // If the node itself is "null" // return 0, as there // are no leaves if (node == null ) { return 0; } // It the node is a leaf then // both right and left // children will be "null" if (node.left == null && node.right == null ) { return 1; } // Now we count the leaves in // the left and right // subtrees and return the sum return countLeaves(node.left) + countLeaves(node.right); } // Driver Code static public void Main() { BinaryTree.root = new Node(1); BinaryTree.root.left = new Node(2); BinaryTree.root.right = new Node(3); BinaryTree.root.left.left = new Node(4); BinaryTree.root.left.right = new Node(5); // Get leaf count of the above created tree Console.WriteLine(countLeaves(root)); } } // This code is contributed by avanitrachhadiya2155 |
Javascript
<script> // Javascript Program for above approach // Node class class Node { // Class newNode of Node type constructor(data) { this .data=data; this .next = this .right = null ; } } // Program to count leaves function countLeaves(node) { // If the node itself is "null" // return 0, as there // are no leaves if (node == null ) return 0; // It the node is a leaf then // both right and left // children will be "null" if (node.left == null && node.right == null ) return 1; // Now we count the leaves in // the left and right // subtrees and return the sum return countLeaves(node.left) + countLeaves(node.right); } // Driver Code let root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); /* get leaf count of the above created tree */ document.write(countLeaves(root)); // This code is contributed by patel2127 </script> |
3
Time complexity: O(n) where n is no of nodes in given Binary Tree
Auxiliary space: O(n)
This article is contributed by Mr. Somesh Awasthi. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...