Iterative Preorder Traversal
Given a Binary Tree, write an iterative function to print the Preorder traversal of the given binary tree.
Refer to this for recursive preorder traversal of Binary Tree. To convert an inherently recursive procedure to iterative, we need an explicit stack.
Following is a simple stack based iterative process to print Preorder traversal.
- Create an empty stack nodeStack and push root node to stack.
- Do the following while nodeStack is not empty.
- Pop an item from the stack and print it.
- Push right child of a popped item to stack
- Push left child of a popped item to stack
The right child is pushed before the left child to make sure that the left subtree is processed first.
C++
// C++ program to implement iterative preorder traversal #include <bits/stdc++.h> using namespace std; /* A binary tree node has data, left child and right child */ struct node { int data; struct node* left; struct node* right; }; /* Helper function that allocates a new node with the given data and NULL left and right pointers.*/ struct node* newNode( int data) { struct node* node = new struct node; node->data = data; node->left = NULL; node->right = NULL; return (node); } // An iterative process to print preorder traversal of Binary tree void iterativePreorder(node* root) { // Base Case if (root == NULL) return ; // Create an empty stack and push root to it stack<node*> nodeStack; nodeStack.push(root); /* Pop all items one by one. Do following for every popped item a) print it b) push its right child c) push its left child Note that right child is pushed first so that left is processed first */ while (nodeStack.empty() == false ) { // Pop the top item from stack and print it struct node* node = nodeStack.top(); printf ( "%d " , node->data); nodeStack.pop(); // Push right and left children of the popped node to stack if (node->right) nodeStack.push(node->right); if (node->left) nodeStack.push(node->left); } } // Driver program to test above functions int main() { /* Constructed binary tree is 10 / \ 8 2 / \ / 3 5 2 */ struct node* root = newNode(10); root->left = newNode(8); root->right = newNode(2); root->left->left = newNode(3); root->left->right = newNode(5); root->right->left = newNode(2); iterativePreorder(root); return 0; } |
Java
// Java program to implement iterative preorder traversal import java.util.Stack; // A binary tree node class Node { int data; Node left, right; Node( int item) { data = item; left = right = null ; } } class BinaryTree { Node root; void iterativePreorder() { iterativePreorder(root); } // An iterative process to print preorder traversal of Binary tree void iterativePreorder(Node node) { // Base Case if (node == null ) { return ; } // Create an empty stack and push root to it Stack<Node> nodeStack = new Stack<Node>(); nodeStack.push(root); /* Pop all items one by one. Do following for every popped item a) print it b) push its right child c) push its left child Note that right child is pushed first so that left is processed first */ while (nodeStack.empty() == false ) { // Pop the top item from stack and print it Node mynode = nodeStack.peek(); System.out.print(mynode.data + " " ); nodeStack.pop(); // Push right and left children of the popped node to stack if (mynode.right != null ) { nodeStack.push(mynode.right); } if (mynode.left != null ) { nodeStack.push(mynode.left); } } } // driver program to test above functions public static void main(String args[]) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 10 ); tree.root.left = new Node( 8 ); tree.root.right = new Node( 2 ); tree.root.left.left = new Node( 3 ); tree.root.left.right = new Node( 5 ); tree.root.right.left = new Node( 2 ); tree.iterativePreorder(); } } // This code has been contributed by Mayank Jaiswal |
Python3
# Python program to perform iterative preorder traversal # A binary tree node class Node: # Constructor to create a new node def __init__( self , data): self .data = data self .left = None self .right = None # An iterative process to print preorder traversal of BT def iterativePreorder(root): # Base CAse if root is None : return # create an empty stack and push root to it nodeStack = [] nodeStack.append(root) # Pop all items one by one. Do following for every popped item # a) print it # b) push its right child # c) push its left child # Note that right child is pushed first so that left # is processed first */ while ( len (nodeStack) > 0 ): # Pop the top item from stack and print it node = nodeStack.pop() print (node.data, end = " " ) # Push right and left children of the popped node # to stack if node.right is not None : nodeStack.append(node.right) if node.left is not None : nodeStack.append(node.left) # Driver program to test above function root = Node( 10 ) root.left = Node( 8 ) root.right = Node( 2 ) root.left.left = Node( 3 ) root.left.right = Node( 5 ) root.right.left = Node( 2 ) iterativePreorder(root) # This code is contributed by Nikhil Kumar Singh(nickzuck_007) |
C#
// C# program to implement iterative // preorder traversal using System; using System.Collections.Generic; // A binary tree node public class Node { public int data; public Node left, right; public Node( int item) { data = item; left = right = null ; } } class GFG { public Node root; public virtual void iterativePreorder() { iterativePreorder(root); } // An iterative process to print preorder // traversal of Binary tree public virtual void iterativePreorder(Node node) { // Base Case if (node == null ) { return ; } // Create an empty stack and push root to it Stack<Node> nodeStack = new Stack<Node>(); nodeStack.Push(root); /* Pop all items one by one. Do following for every popped item a) print it b) push its right child c) push its left child Note that right child is pushed first so that left is processed first */ while (nodeStack.Count > 0) { // Pop the top item from stack and print it Node mynode = nodeStack.Peek(); Console.Write(mynode.data + " " ); nodeStack.Pop(); // Push right and left children of // the popped node to stack if (mynode.right != null ) { nodeStack.Push(mynode.right); } if (mynode.left != null ) { nodeStack.Push(mynode.left); } } } // Driver Code public static void Main( string [] args) { GFG tree = new GFG(); tree.root = new Node(10); tree.root.left = new Node(8); tree.root.right = new Node(2); tree.root.left.left = new Node(3); tree.root.left.right = new Node(5); tree.root.right.left = new Node(2); tree.iterativePreorder(); } } // This code is contributed by Shrikant13 |
Javascript
<script> // Javascript program to implement iterative // preorder traversal // A binary tree node class Node { constructor(item) { this .data = item; this .left = null ; this .right = null ; } } var root = null ; // An iterative process to print preorder // traversal of Binary tree function iterativePreorder(node) { // Base Case if (node == null ) { return ; } // Create an empty stack and push root to it var nodeStack = []; nodeStack.push(root); /* Pop all items one by one. Do following for every popped item a) print it b) push its right child c) push its left child Note that right child is pushed first so that left is processed first */ while (nodeStack.length > 0) { // Pop the top item from stack and print it var mynode = nodeStack[nodeStack.length - 1]; document.write(mynode.data + " " ); nodeStack.pop(); // Push right and left children of // the popped node to stack if (mynode.right != null ) { nodeStack.push(mynode.right); } if (mynode.left != null ) { nodeStack.push(mynode.left); } } } // Driver Code root = new Node(10); root.left = new Node(8); root.right = new Node(2); root.left.left = new Node(3); root.left.right = new Node(5); root.right.left = new Node(2); iterativePreorder(root); // This code is contributed by itsok </script> |
10 8 3 5 2 2
Time Complexity: O(N)
Auxiliary Space: O(H), where H is the height of the tree.
Another Solution: In the previous solution we can see that the left child is popped as soon as it is pushed to the stack, therefore it is not required to push it into the stack.
The idea is to start traversing the tree from the root node, and keep printing the left child while exists and simultaneously, push the right child of every node in an auxiliary stack. Once we reach a null node, pop a right child from the auxiliary stack and repeat the process while the auxiliary stack is not-empty.
This is a micro-optimization over the previous approach, both the solutions use asymptotically similar auxiliary space.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h> using namespace std; // Tree Node struct Node { int data; Node *left, *right; Node( int data) { this ->data = data; this ->left = this ->right = NULL; } }; // Iterative function to do Preorder traversal of the tree void preorderIterative(Node* root) { if (root == NULL) return ; stack<Node*> st; // start from root node (set current node to root node) Node* curr = root; // run till stack is not empty or current is // not NULL while (!st.empty() || curr != NULL) { // Print left children while exist // and keep pushing right into the // stack. while (curr != NULL) { cout << curr->data << " " ; if (curr->right) st.push(curr->right); curr = curr->left; } // We reach when curr is NULL, so We // take out a right child from stack if (st.empty() == false ) { curr = st.top(); st.pop(); } } } // Driver Code int main() { Node* root = new Node(10); root->left = new Node(20); root->right = new Node(30); root->left->left = new Node(40); root->left->left->left = new Node(70); root->left->right = new Node(50); root->right->left = new Node(60); root->left->left->right = new Node(80); preorderIterative(root); return 0; } |
Java
import java.util.Stack; // A binary tree node class Node { int data; Node left, right; Node( int item) { data = item; left = right = null ; } } class BinaryTree{ Node root; void preorderIterative() { preorderIterative(root); } // Iterative function to do Preorder // traversal of the tree void preorderIterative(Node node) { if (node == null ) { return ; } Stack<Node> st = new Stack<Node>(); // Start from root node (set curr // node to root node) Node curr = node; // Run till stack is not empty or // current is not NULL while (curr != null || !st.isEmpty()) { // Print left children while exist // and keep pushing right into the // stack. while (curr != null ) { System.out.print(curr.data + " " ); if (curr.right != null ) st.push(curr.right); curr = curr.left; } // We reach when curr is NULL, so We // take out a right child from stack if (!st.isEmpty()) { curr = st.pop(); } } } // Driver code public static void main(String args[]) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 10 ); tree.root.left = new Node( 20 ); tree.root.right = new Node( 30 ); tree.root.left.left = new Node( 40 ); tree.root.left.left.left = new Node( 70 ); tree.root.left.right = new Node( 50 ); tree.root.right.left = new Node( 60 ); tree.root.left.left.right = new Node( 80 ); tree.preorderIterative(); } } // This code is contributed by Vivek Singh Bhadauria |
Python3
# Tree Node class Node: def __init__( self , data = 0 ): self .data = data self .left = None self .right = None # Iterative function to do Preorder traversal of the tree def preorderIterative(root): if (root = = None ): return st = [] # start from root node (set current node to root node) curr = root # run till stack is not empty or current is # not NULL while ( len (st) or curr ! = None ): # Print left children while exist # and keep appending right into the # stack. while (curr ! = None ): print (curr.data, end = " " ) if (curr.right ! = None ): st.append(curr.right) curr = curr.left # We reach when curr is NULL, so We # take out a right child from stack if ( len (st) > 0 ): curr = st[ - 1 ] st.pop() # Driver Code root = Node( 10 ) root.left = Node( 20 ) root.right = Node( 30 ) root.left.left = Node( 40 ) root.left.left.left = Node( 70 ) root.left.right = Node( 50 ) root.right.left = Node( 60 ) root.left.left.right = Node( 80 ) preorderIterative(root) # This code is contributed by Arnab Kundu |
C#
using System; using System.Collections.Generic; // A binary tree node public class Node { public int data; public Node left, right; public Node( int item) { data = item; left = right = null ; } } public class BinaryTree{ Node root; void preorderIterative() { preorderIterative(root); } // Iterative function to do Preorder // traversal of the tree void preorderIterative(Node node) { if (node == null ) { return ; } Stack<Node> st = new Stack<Node>(); // Start from root node (set curr // node to root node) Node curr = node; // Run till stack is not empty or // current is not NULL while (curr != null || st.Count!=0) { // Print left children while exist // and keep pushing right into the // stack. while (curr != null ) { Console.Write(curr.data + " " ); if (curr.right != null ) st.Push(curr.right); curr = curr.left; } // We reach when curr is NULL, so We // take out a right child from stack if (st.Count != 0) { curr = st.Pop(); } } } // Driver code public static void Main(String []args) { BinaryTree tree = new BinaryTree(); tree.root = new Node(10); tree.root.left = new Node(20); tree.root.right = new Node(30); tree.root.left.left = new Node(40); tree.root.left.left.left = new Node(70); tree.root.left.right = new Node(50); tree.root.right.left = new Node(60); tree.root.left.left.right = new Node(80); tree.preorderIterative(); } } // This code is contributed by Amit Katiyar |
Javascript
<script> class Node { constructor(item) { this .left = null ; this .right = null ; this .data = item; } } let root; // Iterative function to do Preorder // traversal of the tree function preorderiterative(node) { if (node == null ) { return ; } let st = []; // Start from root node (set curr // node to root node) let curr = node; // Run till stack is not empty or // current is not NULL while (curr != null || st.length > 0) { // Print left children while exist // and keep pushing right into the // stack. while (curr != null ) { document.write(curr.data + " " ); if (curr.right != null ) st.push(curr.right); curr = curr.left; } // We reach when curr is NULL, so We // take out a right child from stack if (st.length > 0) { curr = st.pop(); } } } function preorderIterative() { preorderiterative(root); } // Driver code root = new Node(10); root.left = new Node(20); root.right = new Node(30); root.left.left = new Node(40); root.left.left.left = new Node(70); root.left.right = new Node(50); root.right.left = new Node(60); root.left.left.right = new Node(80); preorderIterative(); // This code is contributed by decode2207 </script> |
10 20 40 70 80 50 30 60
Time Complexity: O(N)
Auxiliary Space: O(H), where H is the height of the tree.
ANOTHER APPROACH:
Intuition:
Using Morris Traversal, we can traverse the tree without using stack and recursion. The algorithm for Preorder is almost similar to Morris traversal for Inorder.
1…If left child is null, print the current node data. Move to right child.
….Else, Make the right child of the inorder predecessor point to the current node. Two cases arise:
………a) The right child of the inorder predecessor already points to the current node. Set right child to NULL. Move to right child of current node.
………b) The right child is NULL. Set it to the current node. Print the current node’s data and move to left child of current node.
2…Iterate until the current node is not NULL.
Implementation:
Java
// Java program to implement Morris preorder traversal // A binary tree node class Node { int data; Node left, right; Node( int item) { data = item; left = right = null ; } } class BinaryTree { Node root; void morrisTraversalPreorder() { morrisTraversalPreorder(root); } // Preorder traversal without recursion and without // stack void morrisTraversalPreorder(Node node) { while (node != null ) { // If left child is null, print the current node // data. Move to right child. if (node.left == null ) { System.out.print(node.data + " " ); node = node.right; } else { // Find inorder predecessor Node current = node.left; while (current.right != null && current.right != node) { current = current.right; } // If the right child of inorder predecessor // already points to this node if (current.right == node) { current.right = null ; node = node.right; } // If right child doesn't point to this // node, then print this node and make right // child point to this node else { System.out.print(node.data + " " ); current.right = node; node = node.left; } } } } void preorder() { preorder(root); } // Function for Standard preorder traversal void preorder(Node node) { if (node != null ) { System.out.print(node.data + " " ); preorder(node.left); preorder(node.right); } } // Driver programs to test above functions public static void main(String args[]) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 1 ); tree.root.left = new Node( 2 ); tree.root.right = new Node( 3 ); tree.root.left.left = new Node( 4 ); tree.root.left.right = new Node( 5 ); tree.root.right.left = new Node( 6 ); tree.root.right.right = new Node( 7 ); tree.root.left.left.left = new Node( 8 ); tree.root.left.left.right = new Node( 9 ); tree.root.left.right.left = new Node( 10 ); tree.root.left.right.right = new Node( 11 ); tree.morrisTraversalPreorder(); System.out.println( "" ); tree.preorder(); } } // this code has been contributed by Raunak Singh |
1 2 4 8 9 5 10 11 3 6 7 1 2 4 8 9 5 10 11 3 6 7
Time Complexity: O(n), we visit every node at most once.
Auxiliary Space: O(1), we use a constant amount of space for variables and pointers.
Please Login to comment...