Given a binary tree, print all the ancestors of a particular key existing in the tree without using recursion.
Here we will be discussing the implementation for the above problem.
Examples:
Input : 1 / \ 2 7 / \ / \ 3 5 8 9 / \ / 4 6 10 Key = 6 Output : 5 2 1 Ancestors of 6 are 5, 2 and 1.
The idea is to use iterative postorder traversal of given binary tree.
C++
// C++ program to print all ancestors of a given key #include <bits/stdc++.h> using namespace std; // Structure for a tree node struct Node { int data; struct Node* left, *right; }; // A utility function to create a new tree node struct Node* newNode( int data) { struct Node* node = ( struct Node*) malloc ( sizeof ( struct Node)); node->data = data; node->left = node->right = NULL; return node; } // Iterative Function to print all ancestors of a // given key void printAncestors( struct Node* root, int key) { if (root == NULL) return ; // Create a stack to hold ancestors stack< struct Node*> st; // Traverse the complete tree in postorder way till // we find the key while (1) { // Traverse the left side. While traversing, push // the nodes into the stack so that their right // subtrees can be traversed later while (root && root->data != key) { st.push(root); // push current node root = root->left; // move to next node } // If the node whose ancestors are to be printed // is found, then break the while loop. if (root && root->data == key) break ; // Check if right sub-tree exists for the node at top // If not then pop that node because we don't need // this node any more. if (st.top()->right == NULL) { root = st.top(); st.pop(); // If the popped node is right child of top, // then remove the top as well. Left child of // the top must have processed before. while (!st.empty() && st.top()->right == root) { root = st.top(); st.pop(); } } // if stack is not empty then simply set the root // as right child of top and start traversing right // sub-tree. root = st.empty() ? NULL : st.top()->right; } // If stack is not empty, print contents of stack // Here assumption is that the key is there in tree while (!st.empty()) { cout << st.top()->data << " " ; st.pop(); } } // Driver program to test above functions int main() { // Let us construct a binary tree struct Node* root = newNode(1); root->left = newNode(2); root->right = newNode(7); root->left->left = newNode(3); root->left->right = newNode(5); root->right->left = newNode(8); root->right->right = newNode(9); root->left->left->left = newNode(4); root->left->right->right = newNode(6); root->right->right->left = newNode(10); int key = 6; printAncestors(root, key); return 0; } |
Java
// Java program to print all // ancestors of a given key import java.util.*; class GfG { // Structure for a tree node static class Node { int data; Node left, right; } // A utility function to // create a new tree node static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = null ; node.right = null ; return node; } // Iterative Function to print // all ancestors of a given key static void printAncestors(Node root, int key) { if (root == null ) return ; // Create a stack to hold ancestors Stack<Node> st = new Stack<Node> (); // Traverse the complete tree in // postorder way till we find the key while ( 1 == 1 ) { // Traverse the left side. While // traversing, push the nodes into // the stack so that their right // subtrees can be traversed later while (root != null && root.data != key) { st.push(root); // push current node root = root.left; // move to next node } // If the node whose ancestors // are to be printed is found, // then break the while loop. if (root != null && root.data == key) break ; // Check if right sub-tree exists // for the node at top If not then // pop that node because we don't // need this node any more. if (st.peek().right == null ) { root = st.peek(); st.pop(); // If the popped node is right child of top, // then remove the top as well. Left child of // the top must have processed before. while (!st.isEmpty() && st.peek().right == root) { root = st.peek(); st.pop(); } } // if stack is not empty then simply // set the root as right child of // top and start traversing right // sub-tree. root = st.isEmpty() ? null : st.peek().right; } // If stack is not empty, print contents of stack // Here assumption is that the key is there in tree while (!st.isEmpty()) { System.out.print(st.peek().data + " " ); st.pop(); } } // Driver code public static void main(String[] args) { // Let us construct a binary tree Node root = newNode( 1 ); root.left = newNode( 2 ); root.right = newNode( 7 ); root.left.left = newNode( 3 ); root.left.right = newNode( 5 ); root.right.left = newNode( 8 ); root.right.right = newNode( 9 ); root.left.left.left = newNode( 4 ); root.left.right.right = newNode( 6 ); root.right.right.left = newNode( 10 ); int key = 6 ; printAncestors(root, key); } } // This code is contributed // by prerna saini |
Python3
# Python program to print all ancestors of a given key # A class to create a new tree node class newNode: def __init__( self , data): self .data = data self .left = self .right = None # Iterative Function to print all ancestors of a # given key def printAncestors(root, key): if (root = = None ): return # Create a stack to hold ancestors st = [] # Traverse the complete tree in postorder way till # we find the key while ( 1 ): # Traverse the left side. While traversing, push # the nodes into the stack so that their right # subtrees can be traversed later while (root and root.data ! = key): st.append(root) # push current node root = root.left # move to next node # If the node whose ancestors are to be printed # is found, then break the while loop. if (root and root.data = = key): break # Check if right sub-tree exists for the node at top # If not then pop that node because we don't need # this node any more. if (st[ - 1 ].right = = None ): root = st[ - 1 ] st.pop() # If the popped node is right child of top, # then remove the top as well. Left child of # the top must have processed before. while ( len (st) ! = 0 and st[ - 1 ].right = = root): root = st[ - 1 ] st.pop() # if stack is not empty then simply set the root # as right child of top and start traversing right # sub-tree. root = None if len (st) = = 0 else st[ - 1 ].right # If stack is not empty, print contents of stack # Here assumption is that the key is there in tree while ( len (st) ! = 0 ): print (st[ - 1 ].data,end = " " ) st.pop() # Driver code if __name__ = = '__main__' : # Let us construct a binary tree root = newNode( 1 ) root.left = newNode( 2 ) root.right = newNode( 7 ) root.left.left = newNode( 3 ) root.left.right = newNode( 5 ) root.right.left = newNode( 8 ) root.right.right = newNode( 9 ) root.left.left.left = newNode( 4 ) root.left.right.right = newNode( 6 ) root.right.right.left = newNode( 10 ) key = 6 printAncestors(root, key) # This code is contributed by PranchalK. |
C#
// C# program to print all // ancestors of a given key using System; using System.Collections.Generic; class GfG { // Structure for a tree node public class Node { public int data; public Node left, right; } // A utility function to // create a new tree node static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = null ; node.right = null ; return node; } // Iterative Function to print // all ancestors of a given key static void printAncestors(Node root, int key) { if (root == null ) return ; // Create a stack to hold ancestors Stack<Node> st = new Stack<Node> (); // Traverse the complete tree in // postorder way till we find the key while (1 == 1) { // Traverse the left side. While // traversing, push the nodes into // the stack so that their right // subtrees can be traversed later while (root != null && root.data != key) { st.Push(root); // push current node root = root.left; // move to next node } // If the node whose ancestors // are to be printed is found, // then break the while loop. if (root != null && root.data == key) break ; // Check if right sub-tree exists // for the node at top If not then // pop that node because we don't // need this node any more. if (st.Peek().right == null ) { root = st.Peek(); st.Pop(); // If the popped node is right child of top, // then remove the top as well. Left child of // the top must have processed before. while (st.Count != 0 && st.Peek().right == root) { root = st.Peek(); st.Pop(); } } // if stack is not empty then simply // set the root as right child of // top and start traversing right // sub-tree. root = st.Count == 0 ? null : st.Peek().right; } // If stack is not empty, print contents of stack // Here assumption is that the key is there in tree while (st.Count != 0) { Console.Write(st.Peek().data + " " ); st.Pop(); } } // Driver code public static void Main(String[] args) { // Let us construct a binary tree Node root = newNode(1); root.left = newNode(2); root.right = newNode(7); root.left.left = newNode(3); root.left.right = newNode(5); root.right.left = newNode(8); root.right.right = newNode(9); root.left.left.left = newNode(4); root.left.right.right = newNode(6); root.right.right.left = newNode(10); int key = 6; printAncestors(root, key); } } // This code has been contributed by 29AjayKumar |
Output:
5 2 1
This article is contributed by Gautam Singh. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.