Skip to content
Related Articles

Related Articles

Improve Article

Iterative approach to check if a Binary Tree is BST or not

  • Last Updated : 22 Jun, 2021

Given a Binary Tree, the task is to check if the given binary tree is a Binary Search Tree or not. If found to be true, then print “YES”. Otherwise, print “NO”.

Examples:

Input: 

             9
            / \
           6   10
          / \   \
         4   7   11
        / \   \
       3  5   8

Output: YES 
Explanation: Since the left subtree of each node of the tree consists of smaller valued nodes and the right subtree of each node of the tree consists of larger valued nodes. Therefore, the required is output is “YES”.

Input:  



             5
            / \
           6   3
          / \   \
         4   9   2

Output: NO 
 

 

Recursive Approach: Refer to the previous post to solve this problem using recursion. 
Time Complexity: O(N) where N is the count of nodes in the Binary Tree. 
Auxiliary Space: O(N)

Iterative Approach: To solve the problem iteratively, use Stack. Follow the steps below to solve the problem:

  • Initialize a Stack to store the nodes along with its left subtree.
  • Initialize a variable, say prev, to store previous visited node of the Binary Tree.
  • Traverse the tree and push the root node and left subtree of each node into the stack and check if the data value of the prev node is greater than or equal to the data value of the current visited node or not. If found to be true, then print “NO”.
  • Otherwise, print “YES”.

Below is the implementation of the above approach.

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Structure of a tree node
struct TreeNode {
     
    // Stores data value of a node
    int data;
 
    // Stores left subtree
    // of a tree node
    TreeNode* left;
 
    // Stores right subtree
    // of a tree node
    TreeNode* right;
 
    // Initialization of
    // a tree node
    TreeNode(int val)
    {
        // Update data
        data = val;
 
        // Update left and right
        left = right = NULL;
    }
};
 
// Function to check if a binary tree
// is binary search tree or not
bool checkTreeIsBST(TreeNode *root)
{
    // Stores root node and left
   // subtree of each node
    stack<TreeNode* > Stack;
     
    // Stores previous visited node
    TreeNode* prev = NULL;
     
    // Traverse the binary tree
    while (!Stack.empty() ||
               root != NULL) {
 
        // Traverse left subtree
        while (root != NULL) {
 
            // Insert root into Stack
            Stack.push(root);
 
            // Update root
            root = root->left;
        }
 
        // Stores top element of Stack
        root = Stack.top();
 
        // Remove the top element of Stack
        Stack.pop();
 
        // If data value of root node less
        // than data value of left subtree
        if(prev != NULL &&
               root->data <= prev->data) {
            return false;
        }
 
        // Update prev
        prev = root;
 
        // Traverse right subtree
        // of the tree
        root = root->right;
    }
    return true;
}
 
 
// Driver Code
int main()
{
      /* 
             9
            / \
           6   10
          / \   \
         4   7   11
        / \   \
       3  5   8
        
     */
     
    // Initialize binary tree
    TreeNode *root = new TreeNode(9);
    root->left = new TreeNode(6);
    root->right = new TreeNode(10);
    root->left->left = new TreeNode(4);
    root->left->right = new TreeNode(7);
    root->right->right = new TreeNode(11);
    root->left->left->left = new TreeNode(3);
    root->left->left->right = new TreeNode(5);
    root->left->right->right = new TreeNode(8);
     
    if (checkTreeIsBST(root)) {
        cout<<"YES";
    }
    else {
        cout<<"NO";
    }
}

Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
 
// Structure of a tree node
static class TreeNode {
     
    // Stores data value of a node
    int data;
 
    // Stores left subtree
    // of a tree node
    TreeNode left;
 
    // Stores right subtree
    // of a tree node
    TreeNode right;
 
    // Initialization of
    // a tree node
    TreeNode(int val)
    {
        // Update data
        data = val;
 
        // Update left and right
        left = right = null;
    }
};
 
// Function to check if a binary tree
// is binary search tree or not
static boolean checkTreeIsBST(TreeNode root)
{
    // Stores root node and left
   // subtree of each node
    Stack<TreeNode > Stack = new Stack<TreeNode >();
     
    // Stores previous visited node
    TreeNode prev = null;
     
    // Traverse the binary tree
    while (!Stack.isEmpty() ||
               root != null) {
 
        // Traverse left subtree
        while (root != null) {
 
            // Insert root into Stack
            Stack.add(root);
 
            // Update root
            root = root.left;
        }
 
        // Stores top element of Stack
        root = Stack.peek();
 
        // Remove the top element of Stack
        Stack.pop();
 
        // If data value of root node less
        // than data value of left subtree
        if(prev != null &&
               root.data <= prev.data) {
            return false;
        }
 
        // Update prev
        prev = root;
 
        // Traverse right subtree
        // of the tree
        root = root.right;
    }
    return true;
}
 
// Driver Code
public static void main(String[] args)
{
      /* 
             9
            / \
           6   10
          / \   \
         4   7   11
        / \   \
       3  5   8
        
     */
     
    // Initialize binary tree
    TreeNode root = new TreeNode(9);
    root.left = new TreeNode(6);
    root.right = new TreeNode(10);
    root.left.left = new TreeNode(4);
    root.left.right = new TreeNode(7);
    root.right.right = new TreeNode(11);
    root.left.left.left = new TreeNode(3);
    root.left.left.right = new TreeNode(5);
    root.left.right.right = new TreeNode(8);
     
    if (checkTreeIsBST(root)) {
        System.out.print("YES");
    }
    else {
        System.out.print("NO");
    }
}
}
// This code is contributed by Amit Katiyar

Python3




# Python3 program to implement
# the above approach
 
# Structure of a tree node
class TreeNode:
     
    def __init__(self, data: int) -> None:
 
        # Stores data value of a node
        self.data = data
 
        # Stores left subtree
        # of a tree node
        self.left = None
 
        # Stores right subtree
        # of a tree node
        self.right = None
 
# Function to check if a binary tree
# is binary search tree or not
def checkTreeIsBST(root: TreeNode) -> bool:
     
    # Stores root node and left
    # subtree of each node
    Stack = []
 
    # Stores previous visited node
    prev = None
 
    # Traverse the binary tree
    while (Stack or root):
         
        # Traverse left subtree
        while root:
             
            # Insert root into Stack
            Stack.append(root)
 
            # Update root
            root = root.left
 
        # Stores top element of Stack
        # Remove the top element of Stack
        root = Stack.pop()
 
        # If data value of root node less
        # than data value of left subtree
        if (prev and root.data <= prev.data):
            return False
 
        # Update prev
        prev = root
 
        # Traverse right subtree
        # of the tree
        root = root.right
 
    return True
 
# Driver Code
if __name__ == "__main__":
     
    '''
             9
            / \
           6   10
          / \   \
         4   7   11
        / \   \
       3  5   8
        
    '''
 
    # Initialize binary tree
    root = TreeNode(9)
    root.left = TreeNode(6)
    root.right = TreeNode(10)
    root.left.left = TreeNode(4)
    root.left.right = TreeNode(7)
    root.right.right = TreeNode(11)
    root.left.left.left = TreeNode(3)
    root.left.left.right = TreeNode(5)
    root.left.right.right = TreeNode(8)
 
    if checkTreeIsBST(root):
        print("YES")
    else:
        print("NO")
 
# This code is contributed by sanjeev2552

C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Structure of a tree node
class TreeNode
{
     
    // Stores data value of a node
    public int data;
 
    // Stores left subtree
    // of a tree node
    public TreeNode left;
 
    // Stores right subtree
    // of a tree node
    public TreeNode right;
 
    // Initialization of
    // a tree node
    public TreeNode(int val)
    {
       
        // Update data
        data = val;
 
        // Update left and right
        left = right = null;
    }
};
 
// Function to check if a binary tree
// is binary search tree or not
static bool checkTreeIsBST(TreeNode root)
{
   
    // Stores root node and left
   // subtree of each node
    Stack<TreeNode > Stack = new Stack<TreeNode >();
     
    // Stores previous visited node
    TreeNode prev = null;
     
    // Traverse the binary tree
    while (Stack.Count!=0 ||
               root != null)
    {
 
        // Traverse left subtree
        while (root != null)
        {
 
            // Insert root into Stack
            Stack.Push(root);
 
            // Update root
            root = root.left;
        }
 
        // Stores top element of Stack
        root = Stack.Peek();
 
        // Remove the top element of Stack
        Stack.Pop();
 
        // If data value of root node less
        // than data value of left subtree
        if(prev != null &&
               root.data <= prev.data)
        {
            return false;
        }
 
        // Update prev
        prev = root;
 
        // Traverse right subtree
        // of the tree
        root = root.right;
    }
    return true;
}
 
// Driver Code
public static void Main(String[] args)
{
      /* 
             9
            / \
           6   10
          / \   \
         4   7   11
        / \   \
       3  5   8
        
     */
     
    // Initialize binary tree
    TreeNode root = new TreeNode(9);
    root.left = new TreeNode(6);
    root.right = new TreeNode(10);
    root.left.left = new TreeNode(4);
    root.left.right = new TreeNode(7);
    root.right.right = new TreeNode(11);
    root.left.left.left = new TreeNode(3);
    root.left.left.right = new TreeNode(5);
    root.left.right.right = new TreeNode(8);
     
    if (checkTreeIsBST(root))
    {
        Console.Write("YES");
    }
    else
    {
        Console.Write("NO");
    }
}
}
  
// This code is contributed by shikhasingrajput

Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Structure of a tree node
class TreeNode
{
    constructor(val)
    {
         
        // Stores left subtree
        // of a tree node
        this.left = null;
         
        // Stores right subtree
        // of a tree node
        this.right = null;
         
        // Stores data value of a node
        this.data = val;
    }
}
 
// Function to check if a binary tree
// is binary search tree or not
function checkTreeIsBST(root)
{
     
    // Stores root node and left
    // subtree of each node
    let Stack = [];
     
    // Stores previous visited node
    let prev = null;
     
    // Traverse the binary tree
    while (Stack.length > 0 || root != null)
    {
         
        // Traverse left subtree
        while (root != null)
        {
             
            // Insert root into Stack
            Stack.push(root);
             
            // Update root
            root = root.left;
        }
         
        // Stores top element of Stack
        root = Stack[Stack.length - 1];
         
        // Remove the top element of Stack
        Stack.pop();
         
        // If data value of root node less
        // than data value of left subtree
        if (prev != null &&
            root.data <= prev.data)
        {
            return false;
        }
         
        // Update prev
        prev = root;
         
        // Traverse right subtree
        // of the tree
        root = root.right;
    }
    return true;
}
 
// Driver code
/*
         9
        / \
       6   10
      / \   \
     4   7   11
    / \   \
   3  5   8
     
 */
  
// Initialize binary tree
let root = new TreeNode(9);
root.left = new TreeNode(6);
root.right = new TreeNode(10);
root.left.left = new TreeNode(4);
root.left.right = new TreeNode(7);
root.right.right = new TreeNode(11);
root.left.left.left = new TreeNode(3);
root.left.left.right = new TreeNode(5);
root.left.right.right = new TreeNode(8);
  
if (checkTreeIsBST(root))
{
    document.write("YES");
}
else
{
    document.write("NO");
}
 
// This code is contributed by divyeshrabadiya07
 
</script>
Output: 
YES

 

Time Complexity: O(N), where N is count of nodes in the binary tree 
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :