Related Articles

# Iterating over all possible combinations in an Array using Bits

• Difficulty Level : Medium
• Last Updated : 03 Jun, 2021

There arise several situations while solving a problem where we need to iterate over all possible combinations of an array. In this article, we will discuss the method of using bits to do so.
For the purpose of explaining, consider the following question:

Given an array b[] = {2, 1, 4}. The task is to check if there exists any combination of elements of this array whose sum of elements is equal to k = 6.

Solution using Bit operations
As there are 3 elements in this array, hence we need 3 bits to represent each of the numbers. A bit set as 1 corresponding to the element means it is included while calculating the sum, and not if it is 0.
The possible combinations are:

```000 : No element is selected.
001 : 4 is selected.
010 : 1 is selected.
011 : 1 and 4 are selected.
100 : 2 is selected.
101 : 2 and 4 are selected.
110 : 2 and 1 are selected.
111 : All elements are selected.```

Hence, the range required to access all these bits is 0 – 7. We iterate over each bit of each of the possible combinations, and check for each combination if the sum of chosen elements is equal to the required sum or not.

Examples:

```Input : A = {3, 4, 1, 2} and k = 6
Output : YES
Here, the combination of using 3, 1 and 2 yields
the required sum.

Input : A = {3, 4, 1, 2} and k = 11
Output : NO```

Below is the implementation of the above approach:

## C++

 `// C++ program to iterate over all possible``// combinations of array elements` `#include ``using` `namespace` `std;` `// Function to check if any combination of``// elements of the array sums to k``bool` `checkSum(``int` `a[], ``int` `n, ``int` `k)``{``    ``// Flag variable to check if``    ``// sum exists``    ``int` `flag = 0;` `    ``// Calculate number of bits``    ``int` `range = (1 << n) - 1;` `    ``// Generate combinations using bits``    ``for` `(``int` `i = 0; i <= range; i++) {` `        ``int` `x = 0, y = i, sum = 0;` `        ``while` `(y > 0) {` `            ``if` `(y & 1 == 1) {` `                ``// Calculate sum``                ``sum = sum + a[x];``            ``}``            ``x++;``            ``y = y >> 1;``        ``}` `        ``// If sum is found, set flag to 1``        ``// and terminate the loop``        ``if` `(sum == k)``           ``return` `true``;``    ``}` `    ``return` `false``;``}` `// Driver Code``int` `main()``{``    ``int` `k = 6;``    ``int` `a[] = { 3, 4, 1, 2 };``    ``int` `n = ``sizeof``(a)/``sizeof``(a);``    ``if` `(checkSum(a, n, k))``       ``cout << ``"Yes"``;``    ``else``       ``cout << ``"No"``;` `    ``return` `0;``}`

## Java

 `// Java program to iterate over all possible``// combinations of array elements``class` `GFG``{``    ` `// Function to check if any combination``// of elements of the array sums to k``static` `boolean` `checkSum(``int` `a[], ``int` `n, ``int` `k)``{``    ``// Flag variable to check if``    ``// sum exists``    ``int` `flag = ``0``;` `    ``// Calculate number of bits``    ``int` `range = (``1` `<< n) - ``1``;` `    ``// Generate combinations using bits``    ``for` `(``int` `i = ``0``; i <= range; i++)``    ``{``        ``int` `x = ``0``, y = i, sum = ``0``;` `        ``while` `(y > ``0``)``        ``{``            ``if` `((y & ``1``) == ``1``)``            ``{` `                ``// Calculate sum``                ``sum = sum + a[x];``            ``}``            ``x++;``            ``y = y >> ``1``;``        ``}` `        ``// If sum is found, set flag to 1``        ``// and terminate the loop``        ``if` `(sum == k)``        ``return` `true``;``    ``}` `    ``return` `false``;``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``int` `k = ``6``;``    ``int` `a[] = { ``3``, ``4``, ``1``, ``2` `};``    ``int` `n = a.length;``    ``if` `(checkSum(a, n, k))``    ``System.out.println(``"Yes"``);``    ``else``    ``System.out.println(``"No"``);` `}``}` `// This code is contributed``// by Code_Mech`

## Python3

 `# Python 3 program to iterate over all``# possible combinations of array elements` `# Function to check if any combination of``# elements of the array sums to k``def` `checkSum(a, n, k):``    ` `    ``# Flag variable to check if``    ``# sum exists``    ``flag ``=` `0` `    ``# Calculate number of bits``    ``range__ ``=` `(``1` `<< n) ``-` `1` `    ``# Generate combinations using bits``    ``for` `i ``in` `range``(range__ ``+` `1``):``        ``x ``=` `0``        ``y ``=` `i``        ``sum` `=` `0` `        ``while` `(y > ``0``):``            ``if` `(y & ``1` `=``=` `1``):``                ` `                ``# Calculate sum``                ``sum` `=` `sum` `+` `a[x]` `            ``x ``+``=` `1``            ``y ``=` `y >> ``1` `        ``# If sum is found, set flag to 1``        ``# and terminate the loop``        ``if` `(``sum` `=``=` `k):``            ``return` `True` `    ``return` `False` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``    ``k ``=` `6``    ``a ``=` `[``3``, ``4``, ``1``, ``2``]``    ``n ``=` `len``(a)``    ``if` `(checkSum(a, n, k)):``        ``print``(``"Yes"``)``    ``else``:``        ``print``(``"No"``)``        ` `# This code is contributed by``# Surendra_Gangwar`

## C#

 `// C# program to iterate over all possible``// combinations of array elements``using` `System;``class` `GFG``{``// Function to check if any combination``// of elements of the array sums to k``static` `bool` `checkSum(``int``[] a, ``int` `n, ``int` `k)``{``    ``// Flag variable to check if``    ``// sum exists``    ``int` `// C# program to iterate over all possible``// combinations of array elements``using` `System;` `class` `GFG``{``    ` `// Function to check if any combination``// of elements of the array sums to k``static` `bool` `checkSum(``int``[] a, ``int` `n, ``int` `k)``{``    ``// Flag variable to check if``    ``// sum exists``    ``int` `flag = 0;` `    ``// Calculate number of bits``    ``int` `range = (1 << n) - 1;` `    ``// Generate combinations using bits``    ``for` `(``int` `i = 0; i <= range; i++)``    ``{``        ``int` `x = 0, y = i, sum = 0;` `        ``while` `(y > 0)``        ``{``            ``if` `((y & 1) == 1)``            ``{` `                ``// Calculate sum``                ``sum = sum + a[x];``            ``}``            ``x++;``            ``y = y >> 1;``        ``}` `        ``// If sum is found, set flag to 1``        ``// and terminate the loop``        ``if` `(sum == k)``        ``return` `true``;``    ``}` `    ``return` `false``;``}` `// Driver Code``public` `static` `void` `Main()``{``    ``int` `k = 6;``    ``int``[] a = { 3, 4, 1, 2 };``    ``int` `n = a.Length;``    ``if` `(checkSum(a, n, k))``    ``Console.WriteLine(``"Yes"``);``    ``else``    ``Console.WriteLine(``"No"``);``}``}` `// This code is contributed``// by Code_Mech`

## PHP

 ` 0)``        ``{` `            ``if` `(``\$y` `& 1 == 1)``            ``{` `                ``// Calculate sum``                ``\$sum` `= ``\$sum` `+ ``\$a``[``\$x``];``            ``}``            ``\$x``++;``            ``\$y` `= ``\$y` `>> 1;``        ``}` `        ``// If sum is found, set flag to 1``        ``// and terminate the loop``        ``if` `(``\$sum` `== ``\$k``)``        ``return` `true;``    ``}` `    ``return` `false;``}` `    ``// Driver Code``    ``\$k` `= 6;``    ``\$a` `= ``array``( 3, 4, 1, 2 );``    ``\$n` `= sizeof(``\$a``);``    ``if` `(checkSum(``\$a``, ``\$n``, ``\$k``))``        ``echo` `"Yes"``;``    ``else``        ``echo` `"No"``;` `    ``// This code is contributed by Ryuga``?>`

## Javascript

 ``
Output:
`Yes`

Time complexity : 2(number of bits)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up