Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Invertible Matrices

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

A matrix is a representation of elements, in the form of a rectangular array. A matrix consists of rows and columns. Horizontal lines are known as rows and vertical lines are known as columns. The order of a matrix is defined as number of rows × number of columns. If the number of rows in a matrix is “m” and the number of columns is “n” then the order of the matrix is represented as “m×n”.

The inverse of a Matrix 

Suppose ‘A’ is a square matrix, now this ‘A’ matrix is known as invertible only in one condition if their another matrix ‘B’ of the same dimension exists, such that, AB = BA = In where In is known as identity matrix of the same order and matrix ‘B’ is known as the inverse of the matrix ‘A’. The inverse of a matrix can be represented as A-1. It is also known as non-singular matrix or nondegenerate matrix.

For example: 

A = \begin{bmatrix} 5 &6 \\ 4&5 \end{bmatrix}

and B = \begin{bmatrix} 5 &-6 \\ -4&5 \end{bmatrix}

On multiplying A and B you get,

AB = \begin{bmatrix} 5 &6 \\ 4&5 \end{bmatrix} \begin{bmatrix} 5&-6 \\ -4&5 \end{bmatrix}

AB = \begin{bmatrix} 25-24 &-30+30 \\ 20-20&-24+25 \end{bmatrix}

AB = \begin{bmatrix}1 &0 \\ 0&1 \end{bmatrix}

AB = I ………. (1)

Similarly, you can get BA by multiplying matrix B and matrix A.

BA = \begin{bmatrix} 5 &-6 \\ -4&5 \end{bmatrix} \begin{bmatrix} 5 &6 \\ 4&5 \end{bmatrix}

BA = \begin{bmatrix} 25-24 &30-30 \\ -20+20&-24+25 \end{bmatrix}

BA = \begin{bmatrix} 1 &0 \\ 0&1 \end{bmatrix}

BA = I………… (2)

From (1) and (2), you can see that AB = BA = In

Hence, A is an invertible matrix and inverse of matrix A is matrix B. This can be written as A-1 = B.

If B is inverse matrix for A then also, A is inverse matrix for B. So, you can write B-1 = A.

Note: The necessary and sufficient condition for a square matrix A to possess the inverse is that the matrix should not be singular. A matrix is called a singular matrix, if the determinant of the matrix is zero i.e. |A| = 0. So |A| ≠ 0 for a matrix A which is invertible.

Application of invertible matrix:

The application of invertible matrix is:

  1. Least-squares or Regression
  2. Simulations
  3. MIMO Wireless Communications

Matrix inversion methods:

Using the following methods you can find the other matrix say ‘B’ matrix which is the inverse of matrix ‘A’:

  1. Gaussian Elimination
  2. Newton’s Method
  3. Cayley-Hamilton Method
  4. Eigen Decomposition Method

Example: Check whether matrix A= \begin{bmatrix} 0 &1  &2 \\ 1&2  &3 \\ 3& 1 & 1 \end{bmatrix} is invertible or not. And if A is invertible then check whether matrix B = \frac{-1}{2}\begin{bmatrix} -1 &1  &-1 \\ 8&-6  &2 \\ -5& 3 & -1 \end{bmatrix} is inverse of matrix A or not.

Solution:  

First we check whether matrix A is invertible or not.

|A| = 0×(2-3) – 1×(1-2) + 3×(3-4)

|A| = 0+1-3

|A| = -2 ≠0

Hence. matrix A is invertible.

Now, check whether AB=BA=In or not

AB =  \begin{bmatrix} 0 &1  &2 \\ 1&2  &3 \\ 3& 1 & 1 \end{bmatrix}\frac{-1}{2}\begin{bmatrix} -1 &1  &-1 \\ 8&-6  &2 \\ -5& 3 & -1 \end{bmatrix}

AB = \frac{-1}{2} \begin{bmatrix} 0 &1  &2\\ 1&2  &3 \\ 3& 1& 1 \end{bmatrix} \begin{bmatrix} -1 &1  &-1 \\ 8&-6  &2 \\ -5& 3 & -1 \end{bmatrix}

AB = \frac{-1}{2}\begin{bmatrix} 0+8-10 &0-6+6  &0+2-2 \\ -1+16-15&1-12+9  &-1+4-3 \\ -3+8-5& 3-6+3 & -3+2-1 \end{bmatrix}

AB = \frac{-1}{2} \begin{bmatrix} -2&0  &0\\ 0&-2  &0 \\ 0& 0& -2 \end{bmatrix}

AB = \begin{bmatrix} 1&0  &0\\ 0&1  &0 \\ 0& 0& 1 \end{bmatrix}

AB = I

BA = \frac{-1}{2}\begin{bmatrix} -1 &1  &-1 \\ 8&-6  &2 \\ -5& 3 & -1 \end{bmatrix} \begin{bmatrix} 0 &1  &2 \\ 1&2  &3 \\ 3& 1 & 1 \end{bmatrix}

BA = \frac{-1}{2}\begin{bmatrix} -1 &1  &-1 \\ 8&-6  &2 \\ -5& 3 & -1 \end{bmatrix} \begin{bmatrix} 0 &1  &2\\ 1&2  &3 \\ 3& 1& 1 \end{bmatrix}

BA = \frac{-1}{2}\begin{bmatrix} 0+1-3 &-1+2-1  &-2+3-1 \\ 0-6+6&8-12+2  &16-18+2 \\ 0+3-3& -5+6-1 & -10+9-1 \end{bmatrix}

BA = \frac{-1}{2} \begin{bmatrix} -2&0  &0\\ 0&-2  &0 \\ 0& 0& -2 \end{bmatrix}

BA = \begin{bmatrix} 1&0  &0\\ 0&1  &0 \\ 0& 0& 1 \end{bmatrix}

BA = I

You can see, AB = BA = I

Hence, matrix B is inverse of matrix A.

Theorems of Invertible Matrix 

Theorem 1: Every invertible matrix posses a unique inverse.

Proof: 

Let ‘A’ be an n×n invertible matrix.

Let us considered B and C be two inverse of A.

Then, AB = BA = I …….(1)

and AC = CA = I …….. (2)

From (1) you have

C(AB) = C(In) = C ……..(3)

From (2) you have

(CA)B = In(B) = B ……. (4)

Since, C(AB) = (CA)B [Associativity Law]

So, C = B

Hence, it is proved.

Example: 

Let A = \begin{bmatrix} 2 &9 \\ 1& 7 \end{bmatrix} , B = \begin{bmatrix} b_{1} &b_{2} \\ b_{3}& b_{4} \end{bmatrix}, and C = \begin{bmatrix} c_{1} &c_{2} \\ c_{3}& c_{4} \end{bmatrix}

If both matrices B and C are inverse of matrix A then,

AB = BA = I and

AC = CA = I 

Taking AB = I

\begin{bmatrix} 2 &9 \\ 1& 7 \end{bmatrix} \begin{bmatrix} b_{1} &b_{2} \\ b_{3}& b_{4} \end{bmatrix} = \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}

\begin{bmatrix} 2b_{1}+9b_{3} &2b_{2}+9b_{4} \\ b_{1}+7b_{3}& b_{2}+7b_{4} \end{bmatrix} = \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}

From above, you get 4 equations 

2 b1 + 9 b3 = 1 ………. (1)

b1 + 7 b3 = 0 …………….(2)

2 b2 + 9 b4 = 0 …………..(3)

b2 + 7 b4 = 1 ……………….(4)

after solving these 4 equations, you will get 

b1 = 7/5

b2 = -9/5

b3 = -1/5

b4 = 2/5 

So matrix B = \begin{bmatrix} \frac{7}{5} &\frac{-9}{5} \\ \frac{-1}{5}& \frac{2}{5} \end{bmatrix}     ………… (5)

Now, consider AC = I 

\begin{bmatrix} 2 &9 \\ 1& 7 \end{bmatrix} \begin{bmatrix} c_{1} &c_{2} \\ c_{3}& c_{4} \end{bmatrix} = \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}

\begin{bmatrix} 2c_{1}+9c_{3} &2c_{2}+9c_{4} \\ c_{1}+7c_{3}& c_{2}+7c_{4} \end{bmatrix} = \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}

From above, you get 4 equations

2 b1 + 9 b3 = 1 ………. (6)

b1 + 7 b3 = 0 …………….(7)

2 b2 + 9 b4 = 0 …………..(8)

b2 + 7 b4 = 1 ……………….(9)

After solving these 4 equations, you will get

b1 = 7/5

b2 = -9/5

b3 = -1/5

b4 = 2/5

So matrix B =\begin{bmatrix} \frac{7}{5} &\frac{-9}{5} \\ \frac{-1}{5}& \frac{2}{5} \end{bmatrix}     ………..(10)

From (9) and (10) you can see that matrix B and C are equal.

Hence, it is proved that any invertible matrix posses unique inverse.

Theorem 2 : If A, B be two n-rowed non-singular matrices then AB is also non-singular and (AB)-1= B-1A-1

Proof:

|A| ≠0, |B| ≠0

So, |AB| ≠0

Let a matrix C = B-1A-1

(AB)C = (AB)B-1A-1

(AB)C = A(BB-1)A-1

(AB)C = AInA-1

(AB)C = AA-1

(AB)C = In

C(AB) = B-1A-1(AB)

C(AB) = B-1A-1AB

C(AB) = B-1B

C(AB) = In

Since (AB)C = C(AB) = In

Hence, C is inverse of (AB)

So (AB)-1 = B-1A-1

Example: 

Let A =\begin{bmatrix} 1 &4 \\ 2& 0 \end{bmatrix}     and B =\begin{bmatrix} 3 &0 \\ 1& 2 \end{bmatrix}

AB = \begin{bmatrix} 1 &4 \\ 2& 0 \end{bmatrix} \begin{bmatrix} 3 &0 \\ 1& 2 \end{bmatrix}

AB = \begin{bmatrix} 3+4 &0+8 \\ 6+0& 0 \end{bmatrix}

AB = \begin{bmatrix} 7 &8 \\ 6& 0 \end{bmatrix}

(AB)-1 = \frac{-1}{48}\begin{bmatrix} 0 &-8 \\ -6& 7 \end{bmatrix} ………. (1)

Inverse of a matrix can be obtained by the given formula

A-1 = adjoint of matrix A/ |A|

B = \begin{bmatrix} 3 &0 \\ 1& 2 \end{bmatrix}

B-1\frac{1}{6}\begin{bmatrix} 2 &0 \\ -1& 3 \end{bmatrix}

A = \begin{bmatrix} 1 &4 \\ 2& 0 \end{bmatrix}

A-1\frac{1}{-8}\begin{bmatrix} 0 &-4 \\ -2& 1 \end{bmatrix}

B-1A-1\frac{1}{6}\begin{bmatrix} 2 &0 \\ -1& 3 \end{bmatrix} \frac{1}{-8}\begin{bmatrix} 0 &-4 \\ -2& 1 \end{bmatrix}

B-1A-1\frac{-1}{48}\begin{bmatrix} 0 &-8+0 \\ 0-6& 4+3 \end{bmatrix}

B-1A-1\frac{-1}{48}\begin{bmatrix} 0 &-8 \\ -6& 7 \end{bmatrix} …….. (2)

From (1) and (2), you can see that (AB)-1 = B-1A-1

Hence, it is proved that (AB)-1 = B-1A-1

Properties of inverse of a square matrix

1. (A-1)-1 = A

Proof: 

If A is an invertible matrix then

AA-1 = I 

Taking inverse on both sides

(AA-1)-1 = I-1 

(A-1)-1A-1 = I [from theorem 2 (AB)-1 = B-1A-1]

Multiplying by A on both sides

(A-1)-1A-1A = IA

(A-1)-1I = A

(A-1)-1 = A

Hence, it is proved that (A-1)-1 = A

Example: 

Let A = \begin{bmatrix} 3 &1 \\ 2 & 4 \end{bmatrix}

|A| = 12 – 2 = 10

adj A = \begin{bmatrix} 4 &-1 \\ -2 & 3 \end{bmatrix}

A-1 = adj A /|A|

A-1\frac{1}{10}\begin{bmatrix} 4 &-1 \\ -2 & 3 \end{bmatrix}

(A-1)-1 = adj (A-1) / |A-1|

adj(A-1) = \frac{1}{10}\begin{bmatrix} 3 &1 \\ 2 & 4 \end{bmatrix}

|A-1| = (12 – 10)/100

|A-1| = 1/10

(A-1)-110*\frac{1}{10}\begin{bmatrix} 3 &1 \\ 2 & 4 \end{bmatrix}

(A-1)-1\begin{bmatrix} 3 &1 \\ 2 & 4 \end{bmatrix}

From above you can see that (A-1)-1 = A

2. (A1A2A3………..An)-1 = An-1An-1-1……….A2-1A1-1

You can also write it:

(AB)-1 = A-1B-1

(ABC)-1 = A-1B-1C-1

Proof: 

This can be proved by mathematical induction

for n = 2 

(A1A2)-1 = A2-1A1-1 ……….(1)

This statement is true. [by theorem 2]

Let this is true for n = k

(A1A2A3……….Ak)-1 = Ak-1…………A2-1A1-1……..(2)

For n = k+1, you have to prove this.

(A1A2A3……….AkAk+1)-1

=((A1A2A3………Ak)Ak+1)-1

=((Ak-1…………A2-1A1-1)Ak+1)-1

=(Ak+1)-1 (Ak-1…………A2-1A1-1)    [using theorem 2]

= Ak+1-1Ak-1………….A2-1A1-1 

Hence, it is proved.

Example: 

Suppose there are two matrices A and B, 

Let A = \begin{bmatrix} 1 &4 \\ 2& 0 \end{bmatrix}

and B =\begin{bmatrix} 3 &0 \\ 1& 2 \end{bmatrix}

AB = \begin{bmatrix} 1 &4 \\ 2& 0 \end{bmatrix} \begin{bmatrix} 3 &0 \\ 1& 2 \end{bmatrix}

AB = \begin{bmatrix} 3+4 &0+8 \\ 6+0& 0 \end{bmatrix}

AB = \begin{bmatrix} 7 &8 \\ 6& 0 \end{bmatrix}

(AB)-1\frac{-1}{48}\begin{bmatrix} 0 &-8 \\ -6& 7 \end{bmatrix}  ………. (1)

Inverse of a matrix can be obtained by the given formula

A-1 = adjoint of matrix A/ |A|

B = \begin{bmatrix} 3 &0 \\ 1& 2 \end{bmatrix}

B-1\frac{1}{6}\begin{bmatrix} 2 &0 \\ -1& 3 \end{bmatrix}

A = \begin{bmatrix} 1 &4 \\ 2& 0 \end{bmatrix}

A-1\frac{1}{-8}\begin{bmatrix} 0 &-4 \\ -2& 1 \end{bmatrix}

B-1A-1\frac{1}{6}\begin{bmatrix} 2 &0 \\ -1& 3 \end{bmatrix} \frac{1}{-8}\begin{bmatrix} 0 &-4 \\ -2& 1 \end{bmatrix}

B-1A-1\frac{-1}{48}\begin{bmatrix} 0 &-8+0 \\ 0-6& 4+3 \end{bmatrix}

B-1A-1\frac{-1}{48}\begin{bmatrix} 0 &-8 \\ -6& 7 \end{bmatrix}  …….. (2)

From (1) and (2), you can see that (AB)-1 = B-1A-1

Hence, it is proved that (AB)-1 = B-1A-1

3. AA-1= A-1A = In

Proof: 

A matrix is invertible if AA-1 = I

Multiply by A on both sides

AAA-1 = AI

AI = A

Multiplying by A-1 on both sides

A-1AI = A-1A

I = A-1A

Hence, it is proved that AA-1 = I = A-1A

Example: 

Let A = \begin{bmatrix} 1 &2 \\ -1 &3 \end{bmatrix}

|A| = 3 + 2 = 5

adj A = \begin{bmatrix} 3 &-2 \\ 1 &1 \end{bmatrix}

A-1= adj A \|A|

A-1\frac{1}{5}\begin{bmatrix} 3 &-2 \\ 1 &1 \end{bmatrix}

Now to prove AA-1 = A-1A = I

Taking left hand side

AA-1

\begin{bmatrix} 1 &2 \\ -1 &3 \end{bmatrix}\frac{1}{5}\begin{bmatrix} 3 &-2 \\ 1 &1 \end{bmatrix}

\frac{1}{5}\begin{bmatrix} 3 +2 &-2 +2\\ -3+3 &2+3 \end{bmatrix}

\frac{1}{5}\begin{bmatrix} 5 & 0\\ 0&5 \end{bmatrix}

\begin{bmatrix} 1 & 0\\ 0&1 \end{bmatrix}

The above matrix is equal to the identity matrix.

Now taking right side

A-1A

\frac{1}{5} \begin{bmatrix} 3 &-2 \\ 1 &1 \end{bmatrix} \begin{bmatrix} 1 &2 \\ -1 &3 \end{bmatrix}

\frac{1}{5}\begin{bmatrix} 3+2 & 6-6\\ 1-1&2+3 \end{bmatrix}

\frac{1}{5}\begin{bmatrix} 5 & 0\\ 0&5 \end{bmatrix}

\begin{bmatrix} 1 & 0\\ 0&1 \end{bmatrix}

The above matrix is equal to the identity matrix.

Hence, it is proved that AA-1 = A-1A = I

More Properties:

  • (AT)-1 =(A-1)T
  • (kA)-1 = (1/k)A-1
  • AB = In, where A and B are inverse of each other.
  • If A is square matrix where n > 0, then (A-1)n = A-n

My Personal Notes arrow_drop_up
Last Updated : 12 Mar, 2021
Like Article
Save Article
Similar Reads
Related Tutorials