Open In App

Introduction to Graphs – Data Structure and Algorithm Tutorials

Introduction:

A Graph is a non-linear data structure consisting of vertices and edges. The vertices are sometimes also referred to as nodes and the edges are lines or arcs that connect any two nodes in the graph. More formally a Graph is composed of a set of vertices( V ) and a set of edges( E ). The graph is denoted by G(V, E).

Graph data structures are a powerful tool for representing and analyzing complex relationships between objects or entities. They are particularly useful in fields such as social network analysis, recommendation systems, and computer networks. In the field of sports data science, graph data structures can be used to analyze and understand the dynamics of team performance and player interactions on the field.

Imagine a game of football as a web of connections, where players are the nodes and their interactions on the field are the edges. This web of connections is exactly what a graph data structure represents, and it’s the key to unlocking insights into team performance and player dynamics in sports.

Components of a Graph

Types Of Graph

1. Null Graph

A graph is known as a null graph if there are no edges in the graph.

2. Trivial Graph

Graph having only a single vertex, it is also the smallest graph possible.

 

3. Undirected Graph

A graph in which edges do not have any direction. That is the nodes are unordered pairs in the definition of every edge. 

4. Directed Graph

A graph in which edge has direction. That is the nodes are ordered pairs in the definition of every edge.

5. Connected Graph

The graph in which from one node we can visit any other node in the graph is known as a connected graph. 

6. Disconnected Graph

The graph in which at least one node is not reachable from a node is known as a disconnected graph.

7. Regular Graph

The graph in which the degree of every vertex is equal to K is called K regular graph.

8. Complete Graph

The graph in which from each node there is an edge to each other node.

.

9. Cycle Graph

The graph in which the graph is a cycle in itself, the degree of each vertex is 2. 

10. Cyclic Graph

A graph containing at least one cycle is known as a Cyclic graph.

11. Directed Acyclic Graph

A Directed Graph that does not contain any cycle. 

12. Bipartite Graph

A graph in which vertex can be divided into two sets such that vertex in each set does not contain any edge between them.

13. Weighted Graph

          

Tree v/s Graph

Trees are the restricted types of graphs, just with some more rules. Every tree will always be a graph but not all graphs will be trees. Linked List, Trees, and Heaps all are special cases of graphs. 

Representation of Graphs

There are two ways to store a graph:

Adjacency Matrix

In this method, the graph is stored in the form of the 2D matrix where rows and columns denote vertices. Each entry in the matrix represents the weight of the edge between those vertices. 

Adjacency List

This graph is represented as a collection of linked lists. There is an array of pointer which points to the edges connected to that vertex. 

Comparison between Adjacency Matrix and Adjacency List

When the graph contains a large number of edges then it is good to store it as a matrix because only some entries in the matrix will be empty. An algorithm such as Prim’s and Dijkstra adjacency matrix is used to have less complexity.

Action Adjacency Matrix Adjacency List
Adding Edge O(1) O(1)
Removing an edge O(1) O(N)
Initializing O(N*N) O(N)

Basic Operations on Graphs

Below are the basic operations on the graph:

Usage of graphs

Real-Life Applications of Graph

    

Following are the real-life applications:

When to use Graphs:

However, there are also some scenarios where using a graph may not be the best approach. For example, if the data being represented is very simple or structured, a graph may be overkill and a simpler data structure may suffice. Additionally, if the graph is very large or complex, it may be difficult or computationally expensive to analyze or traverse, which could make using a graph less desirable.

Advantages and Disadvantages:

Advantages:

  1. Graphs are a versatile data structure that can be used to represent a wide range of relationships and data structures.
  2. They can be used to model and solve a wide range of problems, including pathfinding, data clustering, network analysis, and machine learning.
  3. Graph algorithms are often very efficient and can be used to solve complex problems quickly and effectively.
  4. Graphs can be used to represent complex data structures in a simple and intuitive way, making them easier to understand and analyze.

Disadvantages:

  1. Graphs can be complex and difficult to understand, especially for people who are not familiar with graph theory or related algorithms.
  2. Creating and manipulating graphs can be computationally expensive, especially for very large or complex graphs.
  3. Graph algorithms can be difficult to design and implement correctly, and can be prone to bugs and errors.
  4. Graphs can be difficult to visualize and analyze, especially for very large or complex graphs, which can make it challenging to extract meaningful insights from the data.

Summary:

More Resources of Graph


Article Tags :