Skip to content
Related Articles

Related Articles

Insertion in n-ary tree in given order and Level order traversal
  • Last Updated : 27 Feb, 2021

Given a set of parent nodes where the index of the array is the child of each Node value, the task is to insert the nodes as a forest(multiple trees combined together) where each parent could have more than two children. After inserting the nodes, print each level in a sorted format.

Example:

Input: arr[] = {5, 3, -1, 2, 5, 3} 
Output:
-1 
2
3
1 5
Input: arr[] = {-1, -1, -1, -1, -1, 1}
Output:
-1
0 1 2 3 4
5
 

Below is the explanation of the above examples:

  • Example 1:
    • In this given array, the elements of the array will be the parent node and the array index will be the child nodes.
       
    • Initially, we set the root of the forest to be -1 for reference.
    • Now on traversing the array, we insert the nodes into the forest structure.
    • Initially we identify the roots of the individual trees in the forest and insert them into the root of the forest.
       
    • The index of -1 is 2. Print -1 and append 2 as child node.
    • Now search the list for list value as 2. Index 3 has value 2. Therefore 3 becomes the child of 2.
       
    • Now the indexes having value 3 are 1 and 5. So 1 and 5 are the children of 3.
      • The list does not contain 1 so ignore 1.
      • The index that contains 5 are 0 and 4. So they become the child.
        -1 ---------- root of the forest
       /
      2    ---------- level (0) 
     /
    3       ---------- level (1)
   / \
  1   5     ---------- level (2)
 /     \
0       4       ---------- level (3)

Note: level (0) contains roots of each tree
  • Example 2:
    • In this case, the tree will be of the format
     -1        -------- root of the forest
  / | | | \
 0  1 2 3  4   -------- level (0)
    |
    5          -------- level (1)
Note: level (0) contains roots of each tree

Prerequisite: Level order traversal.
Approach: The idea is to recursively insert nodes in a tree. However the tree structure is quite different, usually in the case of binary tree there will be a maximum of two child nodes for any node but in this case the root node can have N number of child nodes.’-1′ is considered as the root and the index of the root will be considered as child nodes.



Example:
If -1 is present in index 3 then 3 will be the child node of -1.

     -1
    / 
   3

Insert -1 into the queue. Now if the root is empty then -1 node becomes the root. Now dequeue and queue the child nodes of -1. Create nodes and append them with the root. Continue this till all the child nodes have been inserted.

Level order Traversal:
     -1
   3   5
 2 4 6   9
The output for level order traversal will be: -1 3 5 2 4 6 9

Same enqueue and dequeue approach is followed for traversing by level order.

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Node creation
class Node
{
    public:
        int val;
         
        // Since n children are possible for a root.
        // A list created to store all the children.
        vector<Node *> child;
         
        // Constructor
        Node(int data) : val(data) {}
};
 
// Function to insert
void insert(Node *root, int parent, Node *node)
{
     
    // Root is empty then the node wil
    // l become the root
    if (!root)
    {
        root = node;
    }
    else
    {
        if (root->val == parent)
        {
        root->child.push_back(node);
        }
        else
        {
            // Recursive approach to
            // insert the child
            int l = root->child.size();
             
            for(int i = 0; i < l; i++)
            {
                if (root->child[i]->val == parent)
                    insert(root->child[i], parent, node);
                else
                    insert(root->child[i], parent, node);
            }
        }
    }
}
 
// Function to perform level order traversal
void levelorder(vector<Node *> &prev_level)
{
    vector<Node *> cur_level;
    vector<int> print_data;
    int l = prev_level.size();
     
    if (l == 0)
    {
        exit(0);
    }
     
    for(int i = 0; i < l; i++)
    {
        int prev_level_len = prev_level[i]->child.size();
         
        for(int j = 0; j < prev_level_len; j++)
        {
             
            // enqueue all the children
            // into cur_level list
            cur_level.push_back(prev_level[i]->child[j]);
             
            // Copies the entire cur_level
            // list into prev_level
            print_data.push_back(prev_level[i]->child[j]->val);
        }
    }
     
    prev_level = cur_level;
    for(auto i : print_data)
    {
        cout << i << " ";
    }
    levelorder(prev_level);
}
 
// Function that calls levelorder method to
// perform level order traversal
void levelorder_root(Node *root)
{
    if (root)
    {
        vector<Node *> level;
        level.push_back(root);
        printf("%d\n", root->val);
        levelorder(level);
    }
}
 
// Driver code
int main(int argc, char const *argv[])
{
     
    // -1 is the root element
    int arr[] = {-1, -1, -1, -1, -1};
    Node *root = new Node(-1);
    int l = sizeof(arr) / sizeof(int);
    vector<int> que;
     
    // Inserting root element to the queue
    que.push_back(-1);
     
    while (true)
    {
        vector<int> temp;
        for(int i = 0; i < l; i++)
        {
            if (find(que.begin(),
                     que.end(), arr[i]) != que.end())
            {
                // Insert elements into the tree
                insert(root, arr[i], new Node(i));
                temp.push_back(i);
            }
        }
     
        // Append child nodes into the queue
        // and insert the child
        que = temp;
         
        if (que.size() == 0)
        {
            break;
        }
    }
    levelorder_root(root);
}
 
// This code is contributed by sanjeev2552

Python3




# Python3 implementation of the approach
 
# Node creation
class Node:
 
    # Constructor
    def __init__(self, data): 
         
        self.val = data
         
        # Since n children are possible for a root.
        # A list created to store all the children.
        self.child = []  
 
 
# Function to insert
def insert(root, parent, node):
     
    # Root is empty then the node will become the root
    if root is None:
        root = node              
 
    else:
        if root.val == parent:
            root.child.append(node)            
        else:
 
            # Recursive approach to
            # insert the child
            l = len(root.child)
             
            for i in range(l):
                if root.child[i].val == parent:
                    insert(root.child[i], parent, node)
                else:
                    insert(root.child[i], parent, node)
 
# Function that calls levelorder method to
# perform level order traversal
def levelorder_root(root):
    if root:
        level = []
        level.append(root)
        print(root.val)
        levelorder(level)
 
# Function to perform level order traversal
def levelorder(prev_level):
 
    cur_level = []
    print_data = []
    l = len(prev_level)
 
    if l == 0:
        exit()
 
    for i in range(l):   
        prev_level_len = len(prev_level[i].child)
 
        for j in range(prev_level_len):
             
            # enqueue all the children
            # into cur_level list
            cur_level.append(
                   prev_level[i].child[j]) 
 
            # Copies the entire cur_level
            # list into prev_level
            print_data.append(
                   prev_level[i].child[j].val)
 
    prev_level = cur_level[:]                
    print(*print_data)
    levelorder(prev_level)
 
 
# Driver code
 
# -1 is the root element   
arr = [-1, -1, -1, -1, -1]
root = Node(-1)
l = len(arr)
que = []
 
# Inserting root element to the queue
que.append(-1)
 
while 1:
    temp = []
    for i in range(l):
        if arr[i] in que:
             
            # Insert elements into the tree
            insert(root, arr[i], Node(i))
            temp.append(i)
 
    # Append child nodes into the queue
    # and insert the child
    que = temp[:]                     
     
    if len(que)== 0:
        break
 
levelorder_root(root)   
Output:
-1
0 1 2 3 4

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :