Inorder traversal of an N-ary Tree

Given an N-ary tree containing, the task is to print the inorder traversal of the tree.

Examples: 

Input: N = 3 
 

Output: 5 6 2 7 3 1 4
Input: N = 3 
 



Output: 2 3 5 1 4 6 

Approach: The inorder traversal of an N-ary tree is defined as visiting all the children except the last then the root and finally the last child recursively. 

Below is the implementation of the above approach: 
 

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include<bits/stdc++.h>
using namespace std;
 
// Class for the node of the tree
struct Node
{
    int data;
 
    // List of children
    struct Node **children;
     
    int length;
     
    Node()
    {
        length = 0;
        data = 0;
    }
 
    Node(int n, int data_)
    {
        children = (Node**)malloc(sizeof(Node*)*n);
        length = n;
        data = data_;
    }
};
 
// Function to print the inorder traversal
// of the n-ary tree
void inorder(Node *node)
{
    if (node == NULL)
        return;
 
    // Total children count
    int total = node->length;
     
    // All the children except the last
    for (int i = 0; i < total - 1; i++)
        inorder(node->children[i]);
 
    // Print the current node's data
    cout<< node->data << " ";
 
    // Last child
    inorder(node->children[total - 1]);
}
 
// Driver code
int main()
{
 
    /* Create the following tree
          1
        / | \
        2 3 4
        / | \
        5 6 7
    */
    int n = 3;
    Node* root = new Node(n, 1);
    root->children[0] = new Node(n, 2);
    root->children[1] = new Node(n, 3);
    root->children[2] = new Node(n, 4);
    root->children[0]->children[0] = new Node(n, 5);
    root->children[0]->children[1] = new Node(n, 6);
    root->children[0]->children[2] = new Node(n, 7);
 
    inorder(root);
    return 0;
}
 
// This code is Contributed by Arnab Kundu
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG {
 
    // Class for the node of the tree
    static class Node {
        int data;
 
        // List of children
        Node children[];
 
        Node(int n, int data)
        {
            children = new Node[n];
            this.data = data;
        }
    }
 
    // Function to print the inorder traversal
    // of the n-ary tree
    static void inorder(Node node)
    {
        if (node == null)
            return;
 
        // Total children count
        int total = node.children.length;
        // All the children except the last
        for (int i = 0; i < total - 1; i++)
            inorder(node.children[i]);
 
        // Print the current node's data
        System.out.print("" + node.data + " ");
 
        // Last child
        inorder(node.children[total - 1]);
    }
 
    // Driver code
    public static void main(String[] args)
    {
 
        /* Create the following tree
                   1
                /  |  \
               2   3   4
             / | \
            5  6  7
        */
        int n = 3;
        Node root = new Node(n, 1);
        root.children[0] = new Node(n, 2);
        root.children[1] = new Node(n, 3);
        root.children[2] = new Node(n, 4);
        root.children[0].children[0] = new Node(n, 5);
        root.children[0].children[1] = new Node(n, 6);
        root.children[0].children[2] = new Node(n, 7);
 
        inorder(root);
    }
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
class GFG:
     
    # Class for the node of the tree
    class Node:
        def __init__(self,n,data):
            # List of children
            self.children = [None]*n
            self.data = data
     
    # Function to print the inorder traversal
    # of the n-ary tree
    def inorder(self, node):
        if node == None:
            return
         
        # Total children count
        total = len(node.children)
         
        # All the children except the last
        for i in range(total-1):
            self.inorder(node.children[i])
         
        # Print the current node's data
        print(node.data,end=" ")
         
        # Last child
        self.inorder(node.children[total-1])
     
    # Driver code
    def main(self):
        # Create the following tree 
        #          1
        #       /  |  \
        #      2   3   4
        #    / | \
        #   5  6  7
         
        n = 3
        root = self.Node(n, 1)
        root.children[0] = self.Node(n, 2)
        root.children[1] = self.Node(n, 3)
        root.children[2] = self.Node(n, 4)
        root.children[0].children[0] = self.Node(n, 5)
        root.children[0].children[1] = self.Node(n, 6)
        root.children[0].children[2] = self.Node(n, 7)
         
        self.inorder(root)
         
ob = GFG() # Create class object
ob.main() # Call main function
 
# This code is contributed by Shivam Singh
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
 
class GFG
{
 
    // Class for the node of the tree
    public class Node
    {
        public int data;
 
        // List of children
        public Node []children;
 
        public Node(int n, int data)
        {
            children = new Node[n];
            this.data = data;
        }
    }
 
    // Function to print the inorder traversal
    // of the n-ary tree
    static void inorder(Node node)
    {
        if (node == null)
            return;
 
        // Total children count
        int total = node.children.Length;
         
        // All the children except the last
        for (int i = 0; i < total - 1; i++)
            inorder(node.children[i]);
 
        // Print the current node's data
        Console.Write("" + node.data + " ");
 
        // Last child
        inorder(node.children[total - 1]);
    }
 
    // Driver code
    public static void Main()
    {
 
        /* Create the following tree
                1
                / | \
            2 3 4
            / | \
            5 6 7
        */
        int n = 3;
        Node root = new Node(n, 1);
        root.children[0] = new Node(n, 2);
        root.children[1] = new Node(n, 3);
        root.children[2] = new Node(n, 4);
        root.children[0].children[0] = new Node(n, 5);
        root.children[0].children[1] = new Node(n, 6);
        root.children[0].children[2] = new Node(n, 7);
 
        inorder(root);
    }
}
 
// This code is contributed by AnkitRai01
chevron_right

Output
5 6 2 7 3 1 4 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :