Related Articles

# Index with Minimum sum of prefix and suffix sums in an Array

• Difficulty Level : Basic
• Last Updated : 26 May, 2021

Given an Array of integers. The task is to find the index in the array at which the value of prefixSum(i) + suffixSum(i) is minimum.
Note

• PrefixSum(i) = The sum of first i numbers of the array.
• SuffixSum(i) = the sum of last N – i + 1 numbers of the array.
• 1-based indexing is considered for the array. That is index of the first element in array is 1.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students. Examples:

```Input : arr[] = {3, 5, 1, 6, 6 }
Output : 3
Explanation:
Presum[] = {3, 8, 9, 15, 21}
Postsum[] = { 21, 18, 13, 12, 6}
Presum[] + Postsum[] = {24, 26, 22, 27, 27}
It is clear that the min value of sum of
prefix and suffix sum is 22 at index 3.

Input : arr[] = { 3, 2, 5, 7, 3 }
Output : 2```

Given that we need to minimize the value of PrefixSum[i] + SuffixSum[i]. That is sum of first elements and elements from end.
If observed carefully, it can be seen that:

PrefixSum[i] + SuffixSum[i] = Sum of all elements in array + arr[i](Element at i-th index)

Since sum of all elements of the array will be the same for every index, therefore the value of PrefixSum[i] + SuffixSum[i] will be minimum for the minimum value of arr[i]
Therefore, the task reduces to find only the index of the minimum element of the array.
Below is the implementation of the above approach:

## C++

 `// C++ program to find the index with``// minimum sum of prefix and suffix``// sums in an Array` `#include ``using` `namespace` `std;` `int` `indexMinSum(``int` `arr[], ``int` `n)``{``    ``// Initialization of the min value``    ``int` `min = arr;``    ``int` `index = 0;` `    ``// Find minimum element in the array``    ``for` `(``int` `i = 1; i < n; i++) {``        ``if` `(arr[i] < min) {` `            ``// store the index of the``            ``// current minimum element``            ``min = arr[i];``            ``index = i;``        ``}``    ``}` `    ``// return the index of min element``    ``// 1-based index``    ``return` `index + 1;``}` `// Driver Code``int` `main()``{``    ``int` `arr[] = { 6, 8, 2, 3, 5 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``cout << indexMinSum(arr, n);``    ``return` `0;``}`

## Java

 `// Java program to find the index with``// minimum sum of prefix and suffix``// sums in an Array` `import` `java.io.*;` `class` `GFG {` `static` `int` `indexMinSum(``int` `arr[], ``int` `n)``{``    ``// Initialization of the min value``    ``int` `min = arr[``0``];``    ``int` `index = ``0``;` `    ``// Find minimum element in the array``    ``for` `(``int` `i = ``1``; i < n; i++) {``        ``if` `(arr[i] < min) {` `            ``// store the index of the``            ``// current minimum element``            ``min = arr[i];``            ``index = i;``        ``}``    ``}` `    ``// return the index of min element``    ``// 1-based index``    ``return` `index + ``1``;``}` `// Driver Code``    ``public` `static` `void` `main (String[] args) {``    ``int` `arr[] = { ``6``, ``8``, ``2``, ``3``, ``5` `};``    ``int` `n =arr.length;``    ``System.out.println( indexMinSum(arr, n));``    ``}``}``// This code is contributed by inder_verma..`

## Python 3

 `# Python 3 program to find the index with``# minimum sum of prefix and suffix``# sums in an Array` `def` `indexMinSum(arr, n):` `    ``# Initialization of the min value``    ``min` `=` `arr[``0``]``    ``index ``=` `0` `    ``# Find minimum element in the array``    ``for` `i ``in` `range``(``1``, n) :``        ``if` `(arr[i] < ``min``) :` `            ``# store the index of the``            ``# current minimum element``            ``min` `=` `arr[i]``            ``index ``=` `i` `    ``# return the index of min element``    ``# 1-based index``    ``return` `index ``+` `1` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:``    ` `    ``arr ``=` `[ ``6``, ``8``, ``2``, ``3``, ``5` `]``    ``n ``=` `len``(arr)``    ``print``(indexMinSum(arr, n))` `# This code is contributed by ita_c`

## C#

 `// C# program to find the index with``// minimum sum of prefix and suffix``// sums in an Array` `using` `System;``class` `GFG``{``    ``static` `int` `indexMinSum(``int` `[]arr, ``int` `n)``    ``{``        ``// Initialization of the min value``        ``int` `min = arr;``        ``int` `index = 0;``    ` `        ``// Find minimum element in the array``        ``for` `(``int` `i = 1; i < n; i++) {``            ``if` `(arr[i] < min) {``    ` `                ``// store the index of the``                ``// current minimum element``                ``min = arr[i];``                ``index = i;``            ``}``        ``}``    ` `        ``// return the index of min element``        ``// 1-based index``        ``return` `index + 1;``    ``}``    ` `    ` `    ``// Driver Code``    ``static` `void` `Main()``    ``{``        ``int` `[]arr = { 6, 8, 2, 3, 5 };``        ``int` `n =arr.Length;``        ``Console.WriteLine(indexMinSum(arr, n));``    ``}``    ``// This code is contributed by ANKITRAI1``}`

## PHP

 ``

## Javascript

 ``
Output:
`3`

My Personal Notes arrow_drop_up