# Increasing permutation of first N natural numbers

Given a permutation {P1, P2, P3, ….. PN) of first N natural numbers. The task is to check if it is possible to make the permutation increasing by swapping any two numbers. If it is already in increasing order, do nothing.

Examples:

Input: a[] = {5, 2, 3, 4, 1}
Output: Yes
Swap 1 and 5

Input: a[] = {1, 2, 3, 4, 5}
Output: Yes

Input: a[] = {5, 2, 1, 4, 3}
Output: No

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Let K be the number of positions i at which P1 ≠ i (1 based indexing). If K = 0, the answer is Yes as the permutation can be left as is. If K = 2, the answer is also Yes: swap the two misplaced elements. (Notice K = 1 is never possible as if any element is put in the wrong position, the element that was meant to be in that position must also be misplaced.). If K > 2 then the answer is No: a single swap can only affect two elements and can thus only correct at most two misplacements.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function that returns true if it is ` `// possible to make the permutation ` `// increasing by swapping any two numbers ` `bool` `isPossible(``int` `a[], ``int` `n) ` `{ ` `    ``// To count misplaced elements ` `    ``int` `k = 0; ` ` `  `    ``// Count all misplaced elements ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``if` `(a[i] != i + 1) ` `            ``k++; ` `    ``} ` ` `  `    ``// If possible ` `    ``if` `(k <= 2) ` `        ``return` `true``; ` ` `  `    ``return` `false``; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `a[] = { 5, 2, 3, 4, 1 }; ` `    ``int` `n = ``sizeof``(a) / ``sizeof``(a); ` ` `  `    ``if` `(isPossible(a, n)) ` `        ``cout << ``"Yes"``; ` `    ``else` `        ``cout << ``"No"``; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `class` `GFG ` `{ ` `     `  `// Function that returns true if it is ` `// possible to make the permutation ` `// increasing by swapping any two numbers ` `static` `boolean` `isPossible(``int` `a[], ``int` `n) ` `{ ` `    ``// To count misplaced elements ` `    ``int` `k = ``0``; ` ` `  `    ``// Count all misplaced elements ` `    ``for` `(``int` `i = ``0``; i < n; i++)  ` `    ``{ ` `        ``if` `(a[i] != i + ``1``) ` `            ``k++; ` `    ``} ` ` `  `    ``// If possible ` `    ``if` `(k <= ``2``) ` `        ``return` `true``; ` ` `  `    ``return` `false``; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `a[] = { ``5``, ``2``, ``3``, ``4``, ``1` `}; ` `    ``int` `n = a.length; ` ` `  `    ``if` `(isPossible(a, n)) ` `        ``System.out.println(``"Yes"``); ` `    ``else` `        ``System.out.println(``"No"``); ` `} ` `} ` ` `  `// This code is contributed by Code_Mech `

## Python3

 `# Python3 implementation of the approach  ` ` `  `# Function that returns true if it is  ` `# possible to make the permutation  ` `# increasing by swapping any two numbers  ` `def` `isPossible(a, n) : ` ` `  `    ``# To count misplaced elements  ` `    ``k ``=` `0``;  ` ` `  `    ``# Count all misplaced elements  ` `    ``for` `i ``in` `range``(n) :  ` `        ``if` `(a[i] !``=` `i ``+` `1``) : ` `            ``k ``+``=` `1``;  ` ` `  `    ``# If possible  ` `    ``if` `(k <``=` `2``) : ` `        ``return` `True``;  ` ` `  `    ``return` `False``;  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `:  ` ` `  `    ``a ``=` `[``5``, ``2``, ``3``, ``4``, ``1` `];  ` `    ``n ``=` `len``(a);  ` ` `  `    ``if` `(isPossible(a, n)) : ` `        ``print``(``"Yes"``);  ` `    ``else` `: ` `        ``print``(``"No"``);  ` ` `  `# This code is contributed by AnkitRai01 `

## C#

 `// C# implementation of the approach ` `using` `System; ` `     `  `class` `GFG ` `{ ` `     `  `// Function that returns true if it is ` `// possible to make the permutation ` `// increasing by swapping any two numbers ` `static` `Boolean isPossible(``int` `[]a, ``int` `n) ` `{ ` `    ``// To count misplaced elements ` `    ``int` `k = 0; ` ` `  `    ``// Count all misplaced elements ` `    ``for` `(``int` `i = 0; i < n; i++)  ` `    ``{ ` `        ``if` `(a[i] != i + 1) ` `            ``k++; ` `    ``} ` ` `  `    ``// If possible ` `    ``if` `(k <= 2) ` `        ``return` `true``; ` ` `  `    ``return` `false``; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``int` `[]a = { 5, 2, 3, 4, 1 }; ` `    ``int` `n = a.Length; ` ` `  `    ``if` `(isPossible(a, n)) ` `        ``Console.WriteLine(``"Yes"``); ` `    ``else` `        ``Console.WriteLine(``"No"``); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

Output:

```Yes
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.