Importance of Hashcode method in Java

Prerequisite: Equals() and hashCode() methods in Java

HashMap and HashSet use hashing to manipulate data. They use hashCode() method to check hash values. The default implementation of hashCode() in Object class returns distinct integers for different objects. Sometimes, we have to implement hashCode method in our program.
Consider the following example





// Java puzzle to illustrate use
// of hashcode() and equals() method
import java.util.*;
public class Name {
    private final String first, last;
    public Name(String first, String last)
        this.first = first;
        this.last = last;
    public boolean equals(Object o)
        if (!(o instanceof Name))
            return false;
        Name n = (Name)o;
        return n.first.equals(first) && n.last.equals(last);
    public static void main(String[] args)
        Set<Name> s = new HashSet<Name>();
        s.add(new Name("Shubham", "Juneja"));
            s.contains(new Name("Shubham", "Juneja")));




  • A Name instance consists of a first name and a last name. Two Name instances are equal, as computed by the equals method, if their first names are equal and their last names are equal.
  • First names and last names are compared using the equals method defined in String. Two strings are equal if they consist of the same characters in the same order. Therefore, two Name instances are equal if they represent the same name. For example, the following method invocation returns true: new Name(“Shubham”, “Juneja”).equals(new Name(“Shubham”, “Juneja”)) The main method of the program creates two Name instances, both representing Shubham Juneja.
  • The program puts the first instance into a hash set and then checks whether the set contains the second. The two Name instances are equal, so it might seem that the program should print true. If you run it, it almost certainly printed false.
  • Why not expected output?

    • The bug is that Name violates the hashCode contract. This might seem strange, as Name doesn’t even have a hashCode method, but that is precisely the problem. The Name class overrides the equals method, and the hashCode contract demands that equal objects have equal hash codes. To fulfill this contract, you must override hashCode whenever you override equals.
    • Because it fails to override hashCode, the Name class inherits its hashCode implementation from Object. This implementation returns an identity-based hash code. In other words, distinct objects are likely to have unequal hash values, even if they are equal. Name does not fulfill the hashCode contract, so the behavior of a hash set containing Name elements is unspecified.
    • When the program puts the first Name instance into the hash set, the set puts an entry for this instance into a hash bucket. The set chooses the hash bucket based on the hash value of the instance, as computed by its hashCode method. When it checks whether the second Name instance is contained in the hash set, the program chooses which bucket to search based on the hash value of the second instance. Because the second instance is distinct from the first, it is likely to have a different hash value.