Implementing Coppersmith Winograd Algorithm in Java
Coppersmith Winograd Algorithm is asymptotically the fastest known algorithm to date for the matrix multiplication algorithm. Algorithms with a preferred asymptotic running time over the Strassen calculation are rarely utilized practically, on the grounds that the huge steady factors in their running occasions make them inappropriate.
It can multiply two n × n matrices in O(n^{2.375477}) time. It is used to check matrix multiplication.
It decides if the matrices are equivalent to a chosen value of k with an expectation value of failure under 2^-k in O(kn^2).
Example
Input:M1={{1,2}, {3,4}} M2={{3,2}, {5,1}} Result={{13,4}, {29,10}} Output:Resultant matrix is matching
Algorithm
// Task is to verify matrix multiplication as M1*M2=M3 or not. 1. Start 2. Take Matrices M1, M2, M3 as an input of (n*n). 3. Choose matrix a[n][1] randomly to which component will be 0 or 1. 4. Calculate M2 * a, M3 * a and then M1 * (M2 * a) for computing the expression, M1 * (M2 * a) - M3 * a. 5. Verify if M1 * (M2 * a) - M3 * a = 0 or not. 6. If it is zero or false, then matrix multiplication is correct otherwise not. 7. End
Below is the implementation of the above approach.
Java
// Implementing Coppersmith Winograd Algorithm in Java import java.io.*; import java.util.Random; class GFG { public static boolean coppersmithWinograd( double [][] M1, double [][] M2, double [][] M3, int n) { double [][] a = new double [n][ 1 ]; Random rand = new Random(); for ( int i = 0 ; i < n; i++) { a[i][ 0 ] = rand.nextInt() % 2 ; } double [][] M2a = new double [n][ 1 ]; for ( int i = 0 ; i < n; i++) { for ( int j = 0 ; j < 1 ; j++) { for ( int k = 0 ; k < n; k++) { M2a[i][j] = M2a[i][j] + M2[i][k] * a[k][j]; } } } double [][] M3a = new double [n][ 1 ]; for ( int i = 0 ; i < n; i++) { for ( int j = 0 ; j < 1 ; j++) { for ( int k = 0 ; k < n; k++) { M3a[i][j] = M3a[i][j] + M3[i][k] * a[k][j]; } } } double [][] M12a = new double [n][ 1 ]; for ( int i = 0 ; i < n; i++) { for ( int j = 0 ; j < 1 ; j++) { for ( int k = 0 ; k < n; k++) { M12a[i][j] = M12a[i][j] + M1[i][k] * M2a[k][j]; } } } for ( int i = 0 ; i < n; i++) { M12a[i][ 0 ] -= M3a[i][ 0 ]; } boolean sameResultantMatrix = true ; for ( int i = 0 ; i < n; i++) { if (M12a[i][ 0 ] == 0 ) continue ; else sameResultantMatrix = false ; } return sameResultantMatrix; } // Driver's Function public static void main(String[] args) { /// "Input the dimension of the matrices: " int n; n = 2 ; // "Input the 1st or M1 matrix: " double [][] M1 = { { 1 , 2 }, { 3 , 4 } }; // "Input the 2nd or M2 matrix: " double [][] M2 = { { 2 , 0 }, { 1 , 2 } }; // "Input the result or M3 matrix: " double [][] M3 = { { 4 , 4 }, { 10 , 8 } }; if (coppersmithWinograd(M1, M2, M3, n)) System.out.println( "Resultant matrix is Matching" ); else System.out.println( "Resultant matrix is not Matching" ); } } |
Output
Resultant matrix is Matching
Time Complexity: O(n^{2.375477})
Please Login to comment...