Implementation of Priority Queue in Javascript
Priority Queue is an extension of Queue having some properties as follows:
- Each element of the priority queue has a priority associated with it.
- Elements are added to the queue as per priority.
- Lowest priority elements are removed first.
We can design a priority queue using two approaches in the first case we can add the queue element at the end of the queue and we can remove the elements of the queue depending on the priority. In the second case, we can add elements to the queue according to the priority and remove them from the front of the queue. In this article, we would use the second approach to implement a Priority Queue.
Note: Assuming a Priority queue can grow dynamically we are not considering the overflow condition.
Let’s see an example of a priority queue class:
Example:
Javascript
// User defined class // to store element and its priority class QElement { constructor(element, priority) { this .element = element; this .priority = priority; } } // PriorityQueue class class PriorityQueue { // An array is used to implement priority constructor() { this .items = []; } // functions to be implemented // enqueue(item, priority) // dequeue() // front() // isEmpty() // printPQueue() } |
As you can see in the example above we have defined the skeleton of PriorityQueue class. We have used a user defined class QElement having two property elements and priority. We have used an array in PriorityQueue class to implement the priority queue, this array is a container of QElement.
1. enqueue(): It adds an element to the queue according to its priority.
Javascript
// enqueue function to add element // to the queue as per priority enqueue(element, priority) { // creating object from queue element var qElement = new QElement(element, priority); var contain = false ; // iterating through the entire // item array to add element at the // correct location of the Queue for ( var i = 0; i < this .items.length; i++) { if ( this .items[i].priority > qElement.priority) { // Once the correct location is found it is // enqueued this .items.splice(i, 0, qElement); contain = true ; break ; } } // if the element have the highest priority // it is added at the end of the queue if (!contain) { this .items.push(qElement); } } |
In this method, we create a qElement have property element and priority. Then we iterate over the queue to find the correct location of the qElement according to its priority and add it.
2. dequeue(): Removes an element from the priority queue
Javascript
// dequeue method to remove // element from the queue dequeue() { // return the dequeued element // and remove it. // if the queue is empty // returns Underflow if ( this .isEmpty()) return "Underflow" ; return this .items.shift(); } |
This function removes an element from the front of a queue as the highest priority element is stored at the front of the priority queue. We have used the shift method of an array to remove an element from the queue.
3. front(): It returns the front element of the Priority queue
Javascript
// front function front() { // returns the highest priority element // in the Priority queue without removing it. if ( this .isEmpty()) return "No elements in Queue" ; return this .items[0]; } |
This function returns the front element of the Priority queue. We simply return the 0th element of an array to get the front of a Priority queue.
4. rear(): It returns the last element of the Priority queue
Javascript
// rear function rear() { // returns the lowest priority // element of the queue if ( this .isEmpty()) return "No elements in Queue" ; return this .items[ this .items.length - 1]; } |
This function returns the last element of the queue or the lowest priority element.
Helper Methods: Let’s declare some helper method that is quite useful while working with the Priority queue.
1. isEmpty(): Returns true if the Priority queue is empty
Javascript
// isEmpty function isEmpty() { // return true if the queue is empty. return this .items.length == 0; } |
We have used the length property of an array to get the length and if it’s 0 then the priority queue is empty.
2. printPQueue(): It prints the element of the queue as per the priority starting from highest to lowest
Javascript
// printQueue function // prints all the element of the queue printPQueue() { var str = "" ; for ( var i = 0; i < this .items.length; i++) str += this .items[i].element + " " ; return str; } |
In this method, we concatenate the element property of each priority queue item into a string.
Note: Here we consider ” 1 ” as the highest priority element, you can modify this as per the requirement.
Implementation: Now let’s use this Priority Queue class and its different method described above
Javascript
// creating object for queue class var priorityQueue = new PriorityQueue(); // testing isEmpty and front on an empty queue // return true console.log(priorityQueue.isEmpty()); // returns "No elements in Queue" console.log(priorityQueue.front()); // adding elements to the queue priorityQueue.enqueue( "Sumit" , 2); priorityQueue.enqueue( "Gourav" , 1); priorityQueue.enqueue( "Piyush" , 1); priorityQueue.enqueue( "Sunny" , 2); priorityQueue.enqueue( "Sheru" , 3); // prints [Gourav Piyush Sumit Sunny Sheru] console.log(priorityQueue.printPQueue()); // prints Gourav console.log(priorityQueue.front().element); // prints Sheru console.log(priorityQueue.rear().element); // removes Gouurav // priorityQueue contains // [Piyush Sumit Sunny Sheru] console.log(priorityQueue.dequeue().element); // Adding another element to the queue priorityQueue.enqueue( "Sunil" , 2); // prints [Piyush Sumit Sunny Sunil Sheru] console.log(priorityQueue.printPQueue()); |
The above implementation is not efficient and is slower. We can further optimize this Priority by Using Heap.
Optimized Approach: We will store the elements of the Priority Queue in the heap structure. When using priority queues the highest priority element is always the root element. There are basically two kinds of the heap:
- Min Heap
- Max Heap
In Min Heap, the smallest element is basically the root element and the child elements are always greater than the parent element whereas in the case of Max Heap the root element is the largest
So, if we want the smallest element in our priority queue to have the highest priority we use Min Heap otherwise we use Max Heap
The time complexity using Min Heap or Max Heap for different methods is:
- Peek : O(1)
- Remove: O(log N)
- Add : O(log N)
To learn more about Min Heap and Max Heap, please refer to the Introduction to Heap – Data Structure and Algorithm Tutorials article.
Example: Let us now look at the implementation of Priority Queue using Min Heap
Javascript
class PriorityQueue { constructor() { this .heap = []; } // Helper Methods getLeftChildIndex(parentIndex) { return 2 * parentIndex + 1; } getRightChildIndex(parentIndex) { return 2 * parentIndex + 2; } getParentIndex(childIndex) { return Math.floor((childIndex - 1) / 2); } hasLeftChild(index) { return this .getLeftChildIndex(index) < this .heap.length; } hasRightChild(index) { return this .getRightChildIndex(index) < this .heap.length; } hasParent(index) { return this .getParentIndex(index) >= 0; } leftChild(index) { return this .heap[ this .getLeftChildIndex(index)]; } rightChild(index) { return this .heap[ this .getRightChildIndex(index)]; } parent(index) { return this .heap[ this .getParentIndex(index)]; } swap(indexOne, indexTwo) { const temp = this .heap[indexOne]; this .heap[indexOne] = this .heap[indexTwo]; this .heap[indexTwo] = temp; } peek() { if ( this .heap.length === 0) { return null ; } return this .heap[0]; } // Removing an element will remove the // top element with highest priority then // heapifyDown will be called remove() { if ( this .heap.length === 0) { return null ; } const item = this .heap[0]; this .heap[0] = this .heap[ this .heap.length - 1]; this .heap.pop(); this .heapifyDown(); return item; } add(item) { this .heap.push(item); this .heapifyUp(); } heapifyUp() { let index = this .heap.length - 1; while ( this .hasParent(index) && this .parent(index) > this .heap[index]) { this .swap( this .getParentIndex(index), index); index = this .getParentIndex(index); } } heapifyDown() { let index = 0; while ( this .hasLeftChild(index)) { let smallerChildIndex = this .getLeftChildIndex(index); if ( this .hasRightChild(index) && this .rightChild(index) < this .leftChild(index)) { smallerChildIndex = this .getRightChildIndex(index); } if ( this .heap[index] < this .heap[smallerChildIndex]) { break ; } else { this .swap(index, smallerChildIndex); } index = smallerChildIndex; } } } // Creating The Priority Queue var PriQueue = new PriorityQueue(); // Adding the Elements PriQueue.add(32); PriQueue.add(45); PriQueue.add(12); PriQueue.add(65); PriQueue.add(85); console.log(PriQueue.peek()); console.log(PriQueue.remove()); console.log(PriQueue.peek()); console.log(PriQueue.remove()); console.log(PriQueue.peek()); console.log(PriQueue.remove()); |
Output:
12 12 32 32 45 45
Explanation: Internally an array is used to store the elements of the priority queue. Element with the minimum value is of the highest priority and is stored as root. We use the helper function peek() to access the element and remove() to pull the element out of the queue.
In the case of Max Heap implementation, we will see that the element with the maximum value should have the highest priority. Similar to Min Heap the highest priority element will be the root element. The helper functions will remain the same only the comparison operators sign in heapifyDown() and heapifyUp() will be reversed.
Example: Priority queue using Max Heap
Javascript
class PriorityQueue { constructor() { this .heap = []; } // Helper Methods getLeftChildIndex(parentIndex) { return 2 * parentIndex + 1; } getRightChildIndex(parentIndex) { return 2 * parentIndex + 2; } getParentIndex(childIndex) { return Math.floor((childIndex - 1) / 2); } hasLeftChild(index) { return this .getLeftChildIndex(index) < this .heap.length; } hasRightChild(index) { return this .getRightChildIndex(index) < this .heap.length; } hasParent(index) { return this .getParentIndex(index) >= 0; } leftChild(index) { return this .heap[ this .getLeftChildIndex(index)]; } rightChild(index) { return this .heap[ this .getRightChildIndex(index)]; } parent(index) { return this .heap[ this .getParentIndex(index)]; } swap(indexOne, indexTwo) { const temp = this .heap[indexOne]; this .heap[indexOne] = this .heap[indexTwo]; this .heap[indexTwo] = temp; } peek() { if ( this .heap.length === 0) { return null ; } return this .heap[0]; } // Removing an element will remove the // top element with highest priority then // heapifyDown will be called remove() { if ( this .heap.length === 0) { return null ; } const item = this .heap[0]; this .heap[0] = this .heap[ this .heap.length - 1]; this .heap.pop(); this .heapifyDown(); return item; } add(item) { this .heap.push(item); this .heapifyUp(); } heapifyUp() { let index = this .heap.length - 1; while ( this .hasParent(index) && this .parent(index) < this .heap[index]) { this .swap( this .getParentIndex(index), index); index = this .getParentIndex(index); } } heapifyDown() { let index = 0; while ( this .hasLeftChild(index)) { let smallerChildIndex = this .getLeftChildIndex(index); if ( this .hasRightChild(index) && this .rightChild(index) > this .leftChild(index)) { smallerChildIndex = this .getRightChildIndex(index); } if ( this .heap[index] > this .heap[smallerChildIndex]) { break ; } else { this .swap(index, smallerChildIndex); } index = smallerChildIndex; } } } // Creating The Priority Queue var PriQueue = new PriorityQueue(); PriQueue.add(32); PriQueue.add(45); PriQueue.add(12); PriQueue.add(65); PriQueue.add(85); // Removing and Checking elements of highest Priority console.log(PriQueue.peek()); console.log(PriQueue.remove()); console.log(PriQueue.peek()); console.log(PriQueue.remove()); console.log(PriQueue.peek()); console.log(PriQueue.remove()); |
Output:
85 85 65 65 45 45
Explanation: Now the element with the highest priority is the one with the highest value. So insertion and deletion have changed but time complexities remain the same.
Please Login to comment...