# Implement Stack using Queues

Given a Queue data structure that supports standard operations like enqueue() and dequeue(). The task is to implement a Stack data structure using only instances of Queue and Queue operations allowed on the instances.

A Stack can be implemented using two queues. Let Stack to be implemented be ‘s’ and queues used to implement are ‘q1’ and ‘q2’. Stack ‘s’ can be implemented in two ways:

## Implement Stack using Queues By making push() operation costly:

Below is the idea to solve the problem:

The idea is to keep newly entered element at the front of ‘q1’ so that pop operation dequeues from ‘q1’. ‘q2’ is used to put every new element in front of ‘q1’.

• Follow the below steps to implement the push(s, x) operation:
• Enqueue x to q2.
• One by one dequeue everything from q1 and enqueue to q2.
• Swap the queues of q1 and q2.
• Follow the below steps to implement the pop(s) operation:
• Dequeue an item from q1 and return it.

Below is the implementation of the above approach.

## C++

 `/* Program to implement a stack using` `two queue */` `#include `   `using` `namespace` `std;`   `class` `Stack {` `    ``// Two inbuilt queues` `    ``queue<``int``> q1, q2;`   `public``:` `    ``void` `push(``int` `x)` `    ``{` `        ``// Push x first in empty q2` `        ``q2.push(x);`   `        ``// Push all the remaining` `        ``// elements in q1 to q2.` `        ``while` `(!q1.empty()) {` `            ``q2.push(q1.front());` `            ``q1.pop();` `        ``}`   `        ``// swap the names of two queues` `        ``queue<``int``> q = q1;` `        ``q1 = q2;` `        ``q2 = q;` `    ``}`   `    ``void` `pop()` `    ``{` `        ``// if no elements are there in q1` `        ``if` `(q1.empty())` `            ``return``;` `        ``q1.pop();` `    ``}`   `    ``int` `top()` `    ``{` `        ``if` `(q1.empty())` `            ``return` `-1;` `        ``return` `q1.front();` `    ``}`   `    ``int` `size() { ``return` `q1.size(); }` `};`   `// Driver code` `int` `main()` `{` `    ``Stack s;` `    ``s.push(1);` `    ``s.push(2);` `    ``s.push(3);`   `    ``cout << ``"current size: "` `<< s.size() << endl;` `    ``cout << s.top() << endl;` `    ``s.pop();` `    ``cout << s.top() << endl;` `    ``s.pop();` `    ``cout << s.top() << endl;`   `    ``cout << ``"current size: "` `<< s.size() << endl;` `    ``return` `0;` `}` `// This code is contributed by Chhavi`

## Java

 `/* Java Program to implement a stack using` `two queue */` `import` `java.util.*;`   `class` `GfG {`   `    ``static` `class` `Stack {` `        ``// Two inbuilt queues` `        ``static` `Queue q1` `            ``= ``new` `LinkedList();` `        ``static` `Queue q2` `            ``= ``new` `LinkedList();`   `        ``// To maintain current number of` `        ``// elements` `        ``static` `int` `curr_size;`   `        ``static` `void` `push(``int` `x)` `        ``{` `            ``// Push x first in empty q2` `            ``q2.add(x);`   `            ``// Push all the remaining` `            ``// elements in q1 to q2.` `            ``while` `(!q1.isEmpty()) {` `                ``q2.add(q1.peek());` `                ``q1.remove();` `            ``}`   `            ``// swap the names of two queues` `            ``Queue q = q1;` `            ``q1 = q2;` `            ``q2 = q;` `        ``}`   `        ``static` `void` `pop()` `        ``{`   `            ``// if no elements are there in q1` `            ``if` `(q1.isEmpty())` `                ``return``;` `            ``q1.remove();` `        ``}`   `        ``static` `int` `top()` `        ``{` `            ``if` `(q1.isEmpty())` `                ``return` `-``1``;` `            ``return` `q1.peek();` `        ``}`   `        ``static` `int` `size() { ``return` `q1.size(); }` `    ``}`   `    ``// driver code` `    ``public` `static` `void` `main(String[] args)` `    ``{` `        ``Stack s = ``new` `Stack();` `        ``s.push(``1``);` `        ``s.push(``2``);` `        ``s.push(``3``);`   `        ``System.out.println(``"current size: "` `+ s.size());` `        ``System.out.println(s.top());` `        ``s.pop();` `        ``System.out.println(s.top());` `        ``s.pop();` `        ``System.out.println(s.top());`   `        ``System.out.println(``"current size: "` `+ s.size());` `    ``}` `}` `// This code is contributed by Prerna`

## Python3

 `# Program to implement a stack using` `# two queue` `from` `_collections ``import` `deque`     `class` `Stack:`   `    ``def` `__init__(``self``):`   `        ``# Two inbuilt queues` `        ``self``.q1 ``=` `deque()` `        ``self``.q2 ``=` `deque()`   `    ``def` `push(``self``, x):`   `        ``# Push x first in empty q2` `        ``self``.q2.append(x)`   `        ``# Push all the remaining` `        ``# elements in q1 to q2.` `        ``while` `(``self``.q1):` `            ``self``.q2.append(``self``.q1.popleft())`   `        ``# swap the names of two queues` `        ``self``.q1, ``self``.q2 ``=` `self``.q2, ``self``.q1`   `    ``def` `pop(``self``):`   `        ``# if no elements are there in q1` `        ``if` `self``.q1:` `            ``self``.q1.popleft()`   `    ``def` `top(``self``):` `        ``if` `(``self``.q1):` `            ``return` `self``.q1[``0``]` `        ``return` `None`   `    ``def` `size(``self``):` `        ``return` `len``(``self``.q1)`     `# Driver Code` `if` `__name__ ``=``=` `'__main__'``:` `    ``s ``=` `Stack()` `    ``s.push(``1``)` `    ``s.push(``2``)` `    ``s.push(``3``)`   `    ``print``(``"current size: "``, s.size())` `    ``print``(s.top())` `    ``s.pop()` `    ``print``(s.top())` `    ``s.pop()` `    ``print``(s.top())`   `    ``print``(``"current size: "``, s.size())`   `# This code is contributed by PranchalK`

## C#

 `/* C# Program to implement a stack using` `two queue */` `using` `System;` `using` `System.Collections;`   `class` `GfG {`   `    ``public` `class` `Stack {` `        ``// Two inbuilt queues` `        ``public` `Queue q1 = ``new` `Queue();` `        ``public` `Queue q2 = ``new` `Queue();`   `        ``public` `void` `push(``int` `x)` `        ``{` `            ``// Push x first in empty q2` `            ``q2.Enqueue(x);`   `            ``// Push all the remaining` `            ``// elements in q1 to q2.` `            ``while` `(q1.Count > 0) {` `                ``q2.Enqueue(q1.Peek());` `                ``q1.Dequeue();` `            ``}`   `            ``// swap the names of two queues` `            ``Queue q = q1;` `            ``q1 = q2;` `            ``q2 = q;` `        ``}`   `        ``public` `void` `pop()` `        ``{`   `            ``// if no elements are there in q1` `            ``if` `(q1.Count == 0)` `                ``return``;` `            ``q1.Dequeue();` `        ``}`   `        ``public` `int` `top()` `        ``{` `            ``if` `(q1.Count == 0)` `                ``return` `-1;` `            ``return` `(``int``)q1.Peek();` `        ``}`   `        ``public` `int` `size() { ``return` `q1.Count; }` `    ``};`   `    ``// Driver code` `    ``public` `static` `void` `Main(String[] args)` `    ``{` `        ``Stack s = ``new` `Stack();` `        ``s.push(1);` `        ``s.push(2);` `        ``s.push(3);` `        ``Console.WriteLine(``"current size: "` `+ s.size());` `        ``Console.WriteLine(s.top());` `        ``s.pop();` `        ``Console.WriteLine(s.top());` `        ``s.pop();` `        ``Console.WriteLine(s.top());` `        ``Console.WriteLine(``"current size: "` `+ s.size());` `    ``}` `}`   `// This code is contributed by Arnab Kundu`

## Javascript

 `/*Javascript Program to implement a stack using` `two queue */`   `// Two inbuilt queues` `class Stack {` `    ``constructor() {` `        ``this``.q1 = [];` `        ``this``.q2 = [];` `    ``}`   `    ``push(x) {`   `        ``// Push x first in isEmpty q2` `        ``this``.q2.push(x);` `        ``// Push all the remaining` `        ``// elements in q1 to q2.` `        ``while` `(``this``.q1.length != 0) {` `            ``this``.q2.push(``this``.q1[0]);` `            ``this``.q1.shift();`   `        ``}`   `        ``// swap the names of two queues` `        ``this``.q = ``this``.q1;` `        ``this``.q1 = ``this``.q2;` `        ``this``.q2 = ``this``.q;` `    ``}`   `    ``pop() {` `        ``// if no elements are there in q1` `        ``if` `(``this``.q1.length == 0)` `            ``return``;` `        ``this``.q1.shift();` `    ``}`   `    ``top() {` `        ``if` `(``this``.q1.length == 0)` `            ``return` `-1;` `        ``return` `this``.q1[0];` `    ``}`   `    ``size() {` `        ``console.log(``this``.q1.length);` `    ``}`   `    ``isEmpty() {` `        ``// return true if the queue is empty.` `        ``return` `this``.q1.length == 0;` `    ``}`   `    ``front() {` `        ``return` `this``.q1[0];` `    ``}` `}`   `// Driver code`     `let s = ``new` `Stack();` `s.push(1);` `s.push(2);` `s.push(3);`   `console.log(``"current size: "``);` `s.size();` `console.log(s.top());` `s.pop();` `console.log(s.top());` `s.pop();` `console.log(s.top());`   `console.log(``"current size: "``);` `s.size();`   `// This code is contributed by adityamaharshi21`

Output

```current size: 3
3
2
1
current size: 1

```

Time Complexity:

• Push operation: O(N), As all the elements need to be popped out from the Queue (q1) and push them back to Queue (q2).
• Pop operation: O(1), As we need to remove the front element from the Queue.

Auxiliary Space: O(N), As we use two queues for the implementation of a Stack.

## Implement Stack using Queues by making pop() operation costly:

Below is the idea to solve the problem:

The new element is always enqueued to q1. In pop() operation, if q2 is empty then all the elements except the last, are moved to q2. Finally, the last element is dequeued from q1 and returned.

• Follow the below steps to implement the push(s, x) operation:
• Enqueue x to q1 (assuming the size of q1 is unlimited).
• Follow the below steps to implement the pop(s) operation:
• One by one dequeue everything except the last element from q1 and enqueue to q2.
• Dequeue the last item of q1, the dequeued item is the result, store it.
• Swap the names of q1 and q2
• Return the item stored in step 2.

Below is the implementation of the above approach:

## C++

 `// Program to implement a stack` `// using two queue` `#include ` `using` `namespace` `std;`   `class` `Stack {` `    ``queue<``int``> q1, q2;`   `public``:` `    ``void` `pop()` `    ``{` `        ``if` `(q1.empty())` `            ``return``;`   `        ``// Leave one element in q1 and` `        ``// push others in q2.` `        ``while` `(q1.size() != 1) {` `            ``q2.push(q1.front());` `            ``q1.pop();` `        ``}`   `        ``// Pop the only left element` `        ``// from q1` `        ``q1.pop();`   `        ``// swap the names of two queues` `        ``queue<``int``> q = q1;` `        ``q1 = q2;` `        ``q2 = q;` `    ``}`   `    ``void` `push(``int` `x) { q1.push(x); }`   `    ``int` `top()` `    ``{` `        ``if` `(q1.empty())` `            ``return` `-1;`   `        ``while` `(q1.size() != 1) {` `            ``q2.push(q1.front());` `            ``q1.pop();` `        ``}`   `        ``// last pushed element` `        ``int` `temp = q1.front();`   `        ``// to empty the auxiliary queue after` `        ``// last operation` `        ``q1.pop();`   `        ``// push last element to q2` `        ``q2.push(temp);`   `        ``// swap the two queues names` `        ``queue<``int``> q = q1;` `        ``q1 = q2;` `        ``q2 = q;` `        ``return` `temp;` `    ``}`   `    ``int` `size() { ``return` `q1.size(); }` `};`   `// Driver code` `int` `main()` `{` `    ``Stack s;` `    ``s.push(1);` `    ``s.push(2);` `    ``s.push(3);`   `    ``cout << ``"current size: "` `<< s.size() << endl;` `    ``cout << s.top() << endl;` `    ``s.pop();` `    ``cout << s.top() << endl;` `    ``s.pop();` `    ``cout << s.top() << endl;` `    ``cout << ``"current size: "` `<< s.size() << endl;` `    ``return` `0;` `}` `// This code is contributed by Chhavi`

## Java

 `/* Java Program to implement a stack` `using two queue */` `import` `java.util.*;`   `class` `Stack {` `    ``Queue q1 = ``new` `LinkedList<>(),` `                   ``q2 = ``new` `LinkedList<>();`   `    ``void` `remove()` `    ``{` `        ``if` `(q1.isEmpty())` `            ``return``;`   `        ``// Leave one element in q1 and` `        ``// push others in q2.` `        ``while` `(q1.size() != ``1``) {` `            ``q2.add(q1.peek());` `            ``q1.remove();` `        ``}`   `        ``// Pop the only left element` `        ``// from q1` `        ``q1.remove();`   `        ``// swap the names of two queues` `        ``Queue q = q1;` `        ``q1 = q2;` `        ``q2 = q;` `    ``}`   `    ``void` `add(``int` `x) { q1.add(x); }`   `    ``int` `top()` `    ``{` `        ``if` `(q1.isEmpty())` `            ``return` `-``1``;`   `        ``while` `(q1.size() != ``1``) {` `            ``q2.add(q1.peek());` `            ``q1.remove();` `        ``}`   `        ``// last pushed element` `        ``int` `temp = q1.peek();`   `        ``// to empty the auxiliary queue after` `        ``// last operation` `        ``q1.remove();`   `        ``// push last element to q2` `        ``q2.add(temp);`   `        ``// swap the two queues names` `        ``Queue q = q1;` `        ``q1 = q2;` `        ``q2 = q;` `        ``return` `temp;` `    ``}`   `    ``int` `size() { ``return` `q1.size(); }`   `    ``// Driver code` `    ``public` `static` `void` `main(String[] args)` `    ``{` `        ``Stack s = ``new` `Stack();` `        ``s.add(``1``);` `        ``s.add(``2``);` `        ``s.add(``3``);`   `        ``System.out.println(``"current size: "` `+ s.size());` `        ``System.out.println(s.top());` `        ``s.remove();` `        ``System.out.println(s.top());` `        ``s.remove();` `        ``System.out.println(s.top());` `        ``System.out.println(``"current size: "` `+ s.size());` `    ``}` `}`   `// This code is contributed by Princi Singh`

## Python3

 `# Program to implement a stack using` `# two queue` `from` `_collections ``import` `deque`     `class` `Stack:`   `    ``def` `__init__(``self``):`   `        ``# Two inbuilt queues` `        ``self``.q1 ``=` `deque()` `        ``self``.q2 ``=` `deque()`   `    ``def` `push(``self``, x):` `        ``self``.q1.append(x)`   `    ``def` `pop(``self``):` `        ``# if no elements are there in q1` `        ``if` `(``not` `self``.q1):` `            ``return` `        ``# Leave one element in q1 and push others in q2` `        ``while``(``len``(``self``.q1) !``=` `1``):` `            ``self``.q2.append(``self``.q1.popleft())`   `        ``# swap the names of two queues` `        ``self``.q1, ``self``.q2 ``=` `self``.q2, ``self``.q1`   `    ``def` `top(``self``):` `        ``# if no elements are there in q1` `        ``if` `(``not` `self``.q1):` `            ``return` `        ``# Leave one element in q1 and push others in q2` `        ``while``(``len``(``self``.q1) !``=` `1``):` `            ``self``.q2.append(``self``.q1.popleft())`   `        ``# Pop the only left element from q1 to q2` `        ``top ``=` `self``.q1[``0``]` `        ``self``.q2.append(``self``.q1.popleft())`   `        ``# swap the names of two queues` `        ``self``.q1, ``self``.q2 ``=` `self``.q2, ``self``.q1`   `        ``return` `top`   `    ``def` `size(``self``):` `        ``return` `len``(``self``.q1)`     `# Driver Code` `if` `__name__ ``=``=` `'__main__'``:` `    ``s ``=` `Stack()` `    ``s.push(``1``)` `    ``s.push(``2``)` `    ``s.push(``3``)`   `    ``print``(``"current size: "``, s.size())` `    ``print``(s.top())` `    ``s.pop()` `    ``print``(s.top())` `    ``s.pop()` `    ``print``(s.top())`   `    ``print``(``"current size: "``, s.size())`   `# This code is contributed by jainlovely450`

## C#

 `using` `System;` `using` `System.Collections;` `class` `GfG {` `    ``public` `class` `Stack {` `        ``public` `Queue q1 = ``new` `Queue();` `        ``public` `Queue q2 = ``new` `Queue();` `        ``// Just enqueue the new element to q1` `        ``public` `void` `Push(``int` `x) = > q1.Enqueue(x);`   `        ``// move all elements from q1 to q2 except the rear` `        ``// of q1. Store the rear of q1 swap q1 and q2 return` `        ``// the stored result` `        ``public` `int` `Pop()` `        ``{` `            ``if` `(q1.Count == 0)` `                ``return` `-1;` `            ``while` `(q1.Count > 1) {` `                ``q2.Enqueue(q1.Dequeue());` `            ``}` `            ``int` `res = (``int``)q1.Dequeue();` `            ``Queue temp = q1;` `            ``q1 = q2;` `            ``q2 = temp;` `            ``return` `res;` `        ``}`   `        ``public` `int` `Size() = > q1.Count;`   `        ``public` `int` `Top()` `        ``{` `            ``if` `(q1.Count == 0)` `                ``return` `-1;` `            ``while` `(q1.Count > 1) {` `                ``q2.Enqueue(q1.Dequeue());` `            ``}` `            ``int` `res = (``int``)q1.Dequeue();` `            ``q2.Enqueue(res);` `            ``Queue temp = q1;` `            ``q1 = q2;` `            ``q2 = temp;` `            ``return` `res;` `        ``}` `    ``};` `    ``public` `static` `void` `Main(String[] args)` `    ``{` `        ``Stack s = ``new` `Stack();` `        ``s.Push(1);` `        ``s.Push(2);` `        ``s.Push(3);` `        ``Console.WriteLine(``"current size: "` `+ s.Size());` `        ``Console.WriteLine(s.Top());` `        ``s.Pop();` `        ``Console.WriteLine(s.Top());` `        ``s.Pop();` `        ``Console.WriteLine(s.Top());` `        ``Console.WriteLine(``"current size: "` `+ s.Size());` `    ``}` `}`   `// Submitted by Sakti Prasad`

## Javascript

 `/*Javascript Program to implement a stack using` `two queue */`   `// Two inbuilt queues` `class Stack {` `    ``constructor() {` `        ``this``.q1 = [];` `        ``this``.q2 = [];` `    ``}` `    `  `    ``pop()` `    ``{` `        ``if` `(``this``.q1.length == 0)` `            ``return``;` `        `  `        ``// Leave one element in q1 and` `        ``// push others in q2.` `        ``while` `(``this``.q1.length != 1){` `            ``this``.q2.push(``this``.q1[0]);` `            ``this``.q1.shift();` `        ``}` `        `  `        ``// Pop the only left element` `        ``// from q1f` `        ``this``.q1.shift();` `        `  `        ``// swap the names of two queues` `        ``this``.q = ``this``.q1;` `        ``this``.q1 = ``this``.q2;` `        ``this``.q2 = ``this``.q;` `    ``}` `    `  `    ``push(x) {` `        ``// if no elements are there in q1` `        ``this``.q1.push(x);` `    ``}` `    `  `    ``top() {` `        ``if` `(``this``.q1.length == 0)` `            ``return` `-1;` `        `  `        ``while` `(``this``.q1.length != 1) {` `            ``this``.q2.push(``this``.q1[0]);` `            ``this``.q1.shift();` `        ``}` `        `  `        ``// last pushed element` `        ``let temp = ``this``.q1[0];` `        `  `        ``// to empty the auxiliary queue after` `        ``// last operation` `        ``this``.q1.shift();` `        `  `        ``// push last element to q2` `        ``this``.q2.push(temp);` `        `  `        ``// swap the two queues names` `        ``this``.q = ``this``.q1;` `        ``this``.q1 = ``this``.q2;` `        ``this``.q2 = ``this``.q;` `        ``return` `temp;` `    ``}`   `    ``size() {` `        ``console.log(``this``.q1.length);` `    ``}`   `    ``isEmpty() {` `        ``// return true if the queue is empty.` `        ``return` `this``.q1.length == 0;` `    ``}`   `    ``front() {` `        ``return` `this``.q1[0];` `    ``}` `}`   `// Driver code` `let s = ``new` `Stack();` `s.push(1);` `s.push(2);` `s.push(3);` `console.log(``"current size: "``);` `s.size();` `console.log(s.top());` `s.pop();` `console.log(s.top());` `s.pop();` `console.log(s.top());`   `console.log(``"current size: "``);` `s.size();`   `// This code is contributed by Susobhan Akhuli`

Output

```current size: 3
3
2
1
current size: 1

```

Time Complexity:

• Push operation: O(1), As, on each push operation the new element is added at the end of the Queue.
• Pop operation: O(N), As, on each pop operation, all the elements are popped out from the Queue (q1) except the last element and pushed into the Queue (q2).

Auxiliary Space: O(N) since 2 queues are used.

## Implement Stack using 1 queue:

Below is the idea to solve the problem:

Using only one queue and make the queue act as a Stack in modified way of the above discussed approach.

Follow the below steps to implement the idea:

• The idea behind this approach is to make one queue and push the first element in it.
• After the first element, we push the next element and then push the first element again and finally pop the first element.
• So, according to the FIFO rule of the queue, the second element that was inserted will be at the front and then the first element as it was pushed again later and its first copy was popped out.
• So, this acts as a Stack and we do this at every step i.e. from the initial element to the second last element, and the last element will be the one that we are inserting and since we will be pushing the initial elements after pushing the last element, our last element becomes the first element.

Below is the implementation for the above approach:

## C++

 `#include ` `using` `namespace` `std;`   `// Stack Class that acts as a queue` `class` `Stack {`   `    ``queue<``int``> q;`   `public``:` `    ``void` `push(``int` `data);` `    ``void` `pop();` `    ``int` `top();` `    ``int` `size();` `    ``bool` `empty();` `};`   `// Push operation` `void` `Stack::push(``int` `data)` `{` `    ``//  Get previous size of queue` `    ``int` `s = q.size();`   `    ``// Push the current element` `    ``q.push(data);`   `    ``// Pop all the previous elements and put them after` `    ``// current element`   `    ``for` `(``int` `i = 0; i < s; i++) {` `        ``// Add the front element again` `        ``q.push(q.front());`   `        ``// Delete front element` `        ``q.pop();` `    ``}` `}`   `// Removes the top element` `void` `Stack::pop()` `{` `    ``if` `(q.empty())` `        ``cout << ``"No elements\n"``;` `    ``else` `        ``q.pop();` `}`   `// Returns top of stack` `int` `Stack::top() { ``return` `(q.empty()) ? -1 : q.front(); }`   `// Returns true if Stack is empty else false` `bool` `Stack::empty() { ``return` `(q.empty()); }`   `int` `Stack::size() { ``return` `q.size(); }`   `int` `main()` `{` `    ``Stack st;` `    ``st.push(1);` `    ``st.push(2);` `    ``st.push(3);` `    ``cout << ``"current size: "` `<< st.size() << ``"\n"``;` `    ``cout << st.top() << ``"\n"``;` `    ``st.pop();` `    ``cout << st.top() << ``"\n"``;` `    ``st.pop();` `    ``cout << st.top() << ``"\n"``;` `    ``cout << ``"current size: "` `<< st.size();` `    ``return` `0;` `}`

## Java

 `import` `java.util.*;`   `/* Java Program to implement a stack` `using only one queue */`   `class` `Stack {` `    ``// One queue` `    ``Queue q1 = ``new` `LinkedList();`   `    ``void` `push(``int` `x)` `    ``{` `        ``//  Get previous size of queue` `        ``int` `s = q1.size();`   `        ``// Push the current element` `        ``q1.add(x);`   `        ``// Pop all the previous elements and put them after` `        ``// current element` `        ``for` `(``int` `i = ``0``; i < s; i++) {` `            ``q1.add(q1.remove());` `        ``}` `    ``}`   `    ``void` `pop()` `    ``{` `        ``// if no elements are there in q1` `        ``if` `(q1.isEmpty())` `            ``return``;` `        ``q1.remove();` `    ``}`   `    ``int` `top()` `    ``{` `        ``if` `(q1.isEmpty())` `            ``return` `-``1``;` `        ``return` `q1.peek();` `    ``}`   `    ``int` `size() { ``return` `q1.size(); }`   `    ``// driver code` `    ``public` `static` `void` `main(String[] args)` `    ``{` `        ``Stack s = ``new` `Stack();` `        ``s.push(``1``);` `        ``s.push(``2``);` `        ``s.push(``3``);`   `        ``System.out.println(``"current size: "` `+ s.size());` `        ``System.out.println(s.top());` `        ``s.pop();` `        ``System.out.println(s.top());` `        ``s.pop();` `        ``System.out.println(s.top());`   `        ``System.out.println(``"current size: "` `+ s.size());` `    ``}` `}`   `// This code is contributed by Vishal Singh Shekhawat`

## Python3

 `from` `_collections ``import` `deque`   `# Stack Class that acts as a queue`     `class` `Stack:` `    ``def` `__init__(``self``):` `        ``self``.q ``=` `deque()`   `    ``# Push operation` `    ``def` `push(``self``, data):` `        ``# Get previous size of queue` `        ``s ``=` `len``(``self``.q)`   `        ``# Push the current element` `        ``self``.q.append(data)`   `        ``# Pop all the previous elements and put them after` `        ``# current element` `        ``for` `i ``in` `range``(s):` `            ``self``.q.append(``self``.q.popleft())`   `    ``# Removes the top element` `    ``def` `pop(``self``):` `        ``if` `(``not` `self``.q):` `            ``print``(``"No elements"``)` `        ``else``:` `            ``self``.q.popleft()`   `    ``# Returns top of stack` `    ``def` `top(``self``):` `        ``if` `(``not` `self``.q):` `            ``return` `        ``return` `self``.q[``0``]`   `    ``def` `size(``self``):` `        ``return` `len``(``self``.q)`     `if` `__name__ ``=``=` `'__main__'``:` `    ``st ``=` `Stack()` `    ``st.push(``1``)` `    ``st.push(``2``)` `    ``st.push(``3``)` `    ``print``(``"current size: "``, st.size())` `    ``print``(st.top())` `    ``st.pop()` `    ``print``(st.top())` `    ``st.pop()` `    ``print``(st.top())` `    ``print``(``"current size: "``, st.size())`

## C#

 `/* C# Program to implement a stack using only one queue */` `using` `System;` `using` `System.Collections;`   `class` `GfG {`   `  ``public` `class` `Stack` `  ``{`   `    ``// One inbuilt queue` `    ``public` `Queue q = ``new` `Queue();`   `    ``public` `void` `push(``int` `x)` `    ``{` `      ``// Get previous size of queue` `      ``int` `s = q.Count;`   `      ``// Push the current element` `      ``q.Enqueue(x);`   `      ``// Pop all the previous elements and put them` `      ``// afte current element` `      ``for` `(``int` `i = 0; i < s; i++) {` `        ``// Add the front element again` `        ``q.Enqueue(q.Peek());`   `        ``// Delete front element` `        ``q.Dequeue();` `      ``}` `    ``}`   `    ``// Removes the top element` `    ``public` `void` `pop()` `    ``{` `      ``// if no elements are there in q` `      ``if` `(q.Count == 0)` `        ``Console.WriteLine(``"No elements"``);` `      ``else` `        ``q.Dequeue();` `    ``}`   `    ``// Returns top of stack` `    ``public` `int` `top()` `    ``{` `      ``if` `(q.Count == 0)` `        ``return` `-1;` `      ``return` `(``int``)q.Peek();` `    ``}`   `    ``public` `int` `size() { ``return` `q.Count; }` `  ``};`   `  ``// Driver code` `  ``public` `static` `void` `Main(String[] args)` `  ``{` `    ``Stack st = ``new` `Stack();` `    ``st.push(1);` `    ``st.push(2);` `    ``st.push(3);` `    ``Console.WriteLine(``"current size: "` `+ st.size());` `    ``Console.WriteLine(st.top());` `    ``st.pop();` `    ``Console.WriteLine(st.top());` `    ``st.pop();` `    ``Console.WriteLine(st.top());` `    ``Console.WriteLine(``"current size: "` `+ st.size());` `  ``}` `}`   `// This code is contributed by Susobhan Akhuli`

## Javascript

 `/*Javascript Program to implement a stack using` `only one queue */`   `// One inbuilt queue` `class Stack {` `    ``constructor() {` `        ``this``.q = [];` `    ``}` `    `  `    ``// Push operation` `    ``push(data) {` `        `  `        ``//  Get previous size of queue` `        ``let s = ``this``.q.length;` `        `  `        ``// Push the current element` `        ``this``.q.push(data);` `        `  `        ``// Pop all the previous elements and put them after` `        ``// current element` `        ``for` `(let i = 0; i < s; i++) {` `            ``// Add the front element again` `            ``this``.q.push(``this``.q[0]);` `            `  `            ``// Delete front element` `            ``this``.q.shift();`   `        ``}` `    ``}` `    `  `    ``// Removes the top element` `    ``pop() {` `        ``// if no elements are there in q1` `        ``if` `(``this``.q.length == 0)` `            ``console.log(``"No elements"``);` `        ``else` `            ``this``.q.shift();` `    ``}`   `    ``top() {` `        ``if` `(``this``.q.length == 0)` `            ``return` `-1;` `        ``return` `this``.q[0];` `    ``}`   `    ``size() {` `        ``console.log(``this``.q.length);` `    ``}`   `    ``isEmpty() {` `        ``// return true if the queue is empty.` `        ``return` `this``.q.length == 0;` `    ``}`   `    ``front() {` `        ``return` `this``.q[0];` `    ``}` `}`   `// Driver code`     `let st = ``new` `Stack();` `st.push(1);` `st.push(2);` `st.push(3);`   `console.log(``"current size: "``);` `st.size();` `console.log(st.top());` `st.pop();` `console.log(st.top());` `st.pop();` `console.log(st.top());`   `console.log(``"current size: "``);` `st.size();`   `// This code is contributed by Susobhan Akhuli`

Output

```current size: 3
3
2
1
current size: 1

```

Time Complexity:

• Push operation: O(N)
• Pop operation: O(1)

Auxiliary Space: O(N) since 1 queue is used.

### Recursive Method:

Below is the implementation for the above approach using recursion –

## C++

 `// CPP Program to implement a stack` `// using one queue and recursion` `#include ` `using` `namespace` `std;`   `// Stack Class that acts as a queue` `class` `Stack {` `    ``queue<``int``> q;`   `public``:` `    ``void` `push(``int` `data, ``int` `c);` `    ``void` `pop();` `    ``int` `top();` `    ``int` `size();` `    ``bool` `empty();` `};`   `// Push operation` `void` `Stack::push(``int` `data, ``int` `c)` `{` `    ``// Push the current element first and` `    ``// After every recursion add the front element again` `    ``q.push(data);`   `    ``// Return if size becomes 0` `    ``if` `(c <= 0)` `        ``return``;`   `    ``// Store current front` `    ``int` `x = q.front();`   `    ``// Delete front element` `    ``q.pop();`   `    ``// Decrement size by 1 in every recursion` `    ``c--;` `    ``Stack::push(x, c);` `}`   `// Removes the top element` `void` `Stack::pop()` `{` `    ``if` `(q.empty())` `        ``cout << ``"No elements\n"``;` `    ``else` `        ``q.pop();` `}`   `// Returns top of stack` `int` `Stack::top() { ``return` `(q.empty()) ? -1 : q.front(); }`   `// Returns true if Stack is empty else false` `bool` `Stack::empty() { ``return` `(q.empty()); }`   `int` `Stack::size() { ``return` `q.size(); }`   `int` `main()` `{` `    ``Stack st;` `    ``st.push(1, st.size()); ``// Value and size` `    ``st.push(2, st.size());` `    ``st.push(3, st.size());` `    ``cout << ``"current size: "` `<< st.size() << ``"\n"``;` `    ``cout << st.top() << ``"\n"``;` `    ``st.pop();` `    ``cout << st.top() << ``"\n"``;` `    ``st.pop();` `    ``cout << st.top() << ``"\n"``;` `    ``cout << ``"current size: "` `<< st.size();` `    ``return` `0;` `}`   `// This code is contributed by Susobhan Akhuli`

## Java

 `import` `java.util.*;`   `/* Java Program to implement a stack` `using only one queue */`   `class` `Stack {` `    ``// One queue` `    ``Queue q1 = ``new` `LinkedList();`   `    ``void` `push(``int` `data, ``int` `c)` `    ``{`   `        ``// Push the current element first and` `        ``// After every recursion add the front element again` `        ``q1.add(data);`   `        ``// Return if size becomes 0` `        ``if` `(c <= ``0``)` `            ``return``;`   `        ``// Decrement size by 1 in every recursion` `        ``c--;`   `        ``// remove front element from queue and return it` `        ``// using q1.remove() and call recursive function` `        ``push(q1.remove(), c);` `    ``}`   `    ``void` `pop()` `    ``{` `        ``// if no elements are there in q1` `        ``if` `(q1.isEmpty())` `            ``return``;` `        ``q1.remove();` `    ``}`   `    ``int` `top()` `    ``{` `        ``if` `(q1.isEmpty())` `            ``return` `-``1``;` `        ``return` `q1.peek();` `    ``}`   `    ``int` `size() { ``return` `q1.size(); }`   `    ``// driver code` `    ``public` `static` `void` `main(String[] args)` `    ``{` `        ``Stack s = ``new` `Stack();` `        ``s.push(``1``, s.size()); ``// Value and current size` `        ``s.push(``2``, s.size());` `        ``s.push(``3``, s.size());`   `        ``System.out.println(``"current size: "` `+ s.size());` `        ``System.out.println(s.top());` `        ``s.pop();` `        ``System.out.println(s.top());` `        ``s.pop();` `        ``System.out.println(s.top());`   `        ``System.out.println(``"current size: "` `+ s.size());` `    ``}` `}`   `// This code is contributed by Susobhan Akhuli`

## Python3

 `from` `_collections ``import` `deque`   `# Stack Class that acts as a queue`     `class` `Stack:` `    ``def` `__init__(``self``):` `        ``self``.q ``=` `deque()`   `    ``# Push operation` `    ``def` `push(``self``, data, c):`   `        ``# Push the current element` `        ``self``.q.append(data)`   `        ``# Return if size becomes 0` `        ``if` `c <``=` `0``:` `            ``return`   `        ``# Store and then pop the current front` `        ``x ``=` `self``.q.popleft()`   `        ``# Decrement size by 1 in every recursion` `        ``c ``=` `c``-``1` `        ``self``.push(x, c)`   `    ``# Removes the top element` `    ``def` `pop(``self``):` `        ``if` `(``not` `self``.q):` `            ``print``(``"No elements"``)` `        ``else``:` `            ``self``.q.popleft()`   `    ``# Returns top of stack` `    ``def` `top(``self``):` `        ``if` `(``not` `self``.q):` `            ``return` `        ``return` `self``.q[``0``]`   `    ``def` `size(``self``):` `        ``return` `len``(``self``.q)`     `if` `__name__ ``=``=` `'__main__'``:` `    ``st ``=` `Stack()` `    ``st.push(``1``, st.size())` `    ``st.push(``2``, st.size())` `    ``st.push(``3``, st.size())` `    ``print``(``"current size: "``, st.size())` `    ``print``(st.top())` `    ``st.pop()` `    ``print``(st.top())` `    ``st.pop()` `    ``print``(st.top())` `    ``print``(``"current size: "``, st.size())`   `# This code is contributed by Susobhan Akhuli`

## C#

 `// C# Program to implement a stack` `// using one queue and recursion`   `using` `System;` `using` `System.Collections;`   `class` `GfG {`   `    ``public` `class` `Stack {` `        ``// One inbuilt queue` `        ``public` `Queue q = ``new` `Queue();`   `        ``// Push operation` `        ``public` `void` `push(``int` `x, ``int` `c)` `        ``{`   `            ``// Push the current element first and` `            ``// After every recursion add the front element` `            ``// again` `            ``q.Enqueue(x);`   `            ``// Return if size becomes 0` `            ``if` `(c <= 0)` `                ``return``;`   `            ``// Store current front` `            ``int` `p = (``int``)q.Peek();`   `            ``// Delete front element` `            ``q.Dequeue();`   `            ``// Decrement size by 1 in every recursion` `            ``c--;` `            ``push(p, c);` `        ``}`   `        ``// Removes the top element` `        ``public` `void` `pop()` `        ``{` `            ``// if no elements are there in q` `            ``if` `(q.Count == 0)` `                ``Console.WriteLine(``"No elements"``);` `            ``else` `                ``q.Dequeue();` `        ``}`   `        ``// Returns top of stack` `        ``public` `int` `top()` `        ``{` `            ``if` `(q.Count == 0)` `                ``return` `-1;` `            ``return` `(``int``)q.Peek();` `        ``}`   `        ``public` `int` `size() { ``return` `q.Count; }` `    ``};`   `    ``// Driver code` `    ``public` `static` `void` `Main(String[] args)` `    ``{` `        ``Stack st = ``new` `Stack();` `        ``st.push(1, st.size());` `        ``st.push(2, st.size());` `        ``st.push(3, st.size());` `        ``Console.WriteLine(``"current size: "` `+ st.size());` `        ``Console.WriteLine(st.top());` `        ``st.pop();` `        ``Console.WriteLine(st.top());` `        ``st.pop();` `        ``Console.WriteLine(st.top());` `        ``Console.WriteLine(``"current size: "` `+ st.size());` `    ``}` `}`   `// This code is contributed by Susobhan Akhuli`

## Javascript

 `// Javascript Program to implement a stack using one queue and recursion`   `      ``// Stack Class that acts as a queue` `      ``class Stack {` `        ``constructor() {` `          ``this``.q = [];` `        ``}`   `        ``// Push operation` `        ``push(data, c) {` `          ``// Push the current element first and` `          ``//After every recursion add the front element again` `          ``this``.q.push(data);`   `          ``//Returns if size becomes 0` `          ``if` `(c <= 0) {` `            ``return``;` `          ``}`   `          ``//Store Current Front` `          ``let x = ``this``.q[0];`   `          ``//Delete front element` `          ``this``.q.shift();`   `          ``//Decrease size by 1 in every recursion` `          ``c--;` `          ``this``.push(x, c);` `        ``}`   `        ``// Removes the top element` `        ``pop() {` `          ``if` `(``this``.q.length == 0) console.log(``"No elements"``);` `          ``else` `this``.q.shift();` `        ``}`   `        ``//Return top of stack` `        ``top() {` `          ``if` `(``this``.q.length == 0) ``return` `-1;` `          ``return` `this``.q[0];` `        ``}`   `        ``// return true if the stack is empty else false.` `        ``isEmpty() {` `          ``return` `this``.q.length == 0;` `        ``}`   `        ``size() {` `          ``return` `this``.q.length;` `        ``}` `      ``}`   `      ``// Driver code` `      ``let st = ``new` `Stack();` `      ``st.push(1, st.size()); ``//value and size` `      ``st.push(2, st.size());` `      ``st.push(3, st.size());`   `      ``console.log(``"current size: "` `+ st.size());` `      ``console.log(st.top());` `      ``st.pop();` `      ``console.log(st.top());` `      ``st.pop();` `      ``console.log(st.top());`   `      ``console.log(``"current size: "` `+ st.size());` `      `  `      ``// This code is contributed by satwiksuman.`

Output

```current size: 3
3
2
1
current size: 1

```

Time Complexity:

• Push operation: O(N)
• Pop operation: O(1)

Auxiliary Space: O(N) since 1 queue is used and also for the stack used for recursion.

• Using a Deque (Double Ended Queue):
A Deque is a data structure that supports adding and removing elements from both ends in constant time. To implement a Stack using a Deque, we can make use of the addFirst and removeFirst methods to implement push and pop operations respectively.

## C++

 `// CPP Program to implement a stack` `// using dequeue` `#include ` `using` `namespace` `std;`   `class` `Stack {` `private``:` `    ``// Create an empty deque` `    ``deque<``int``> my_deque;`   `public``:` `    ``void` `push(``int` `item)` `    ``{` `        ``// Append the item to the end of the deque` `        ``my_deque.push_back(item);` `    ``}`   `    ``int` `pop()` `    ``{` `        ``// Remove and return the item from the end of the` `        ``// deque` `        ``int` `item = my_deque.back();` `        ``my_deque.pop_back();` `        ``return` `item;` `    ``}`   `    ``int` `size()` `    ``{` `        ``// Return size of deque` `        ``return` `my_deque.size();` `    ``}`   `    ``bool` `is_empty()` `    ``{` `        ``// Return True if the deque is empty, and False` `        ``// otherwise` `        ``return` `my_deque.empty();` `    ``}`   `    ``int` `top()` `    ``{` `        ``if` `(is_empty()) {` `            ``// If the stack is empty, return -1` `            ``return` `-1;` `        ``}` `        ``else` `{` `            ``// Return the last item in the deque` `            ``return` `my_deque.back();` `        ``}` `    ``}` `};`   `int` `main()` `{` `    ``Stack st;` `    ``st.push(1);` `    ``st.push(2);` `    ``st.push(3);` `    ``cout << ``"current size: "` `<< st.size() << endl;` `    ``cout << st.top() << endl;` `    ``st.pop();` `    ``cout << st.top() << endl;` `    ``st.pop();` `    ``cout << st.top() << endl;` `    ``cout << ``"current size: "` `<< st.size() << endl;` `    ``return` `0;` `}`   `// This code is contributed by Susobhan Akhuli`

## Java

 `// Java program to implement a stack using Deque`   `import` `java.util.*;`   `class` `Stack {` `    ``// Create an empty deque` `    ``Deque myDeque = ``new` `LinkedList<>();`   `    ``void` `push(``int` `item) {` `        ``// Append the item to the end of the deque` `        ``myDeque.addLast(item);` `    ``}`   `    ``int` `pop() {` `        ``// Remove and return the item from the end of the deque` `        ``int` `item = myDeque.getLast();` `        ``myDeque.removeLast();` `        ``return` `item;` `    ``}`   `    ``int` `size() {` `        ``// Return size of deque` `        ``return` `myDeque.size();` `    ``}`   `    ``boolean` `isEmpty() {` `        ``// Return true if the deque is empty, and false otherwise` `        ``return` `myDeque.isEmpty();` `    ``}`   `    ``int` `top() {` `        ``if` `(isEmpty()) {` `            ``// If the stack is empty, return -1` `            ``return` `-``1``;` `        ``}` `        ``else` `{` `            ``// Return the last item in the deque` `            ``return` `myDeque.getLast();` `        ``}` `    ``}` `}`   `class` `GFG {` `    ``public` `static` `void` `main(String[] args) {` `        ``Stack st = ``new` `Stack();` `        ``st.push(``1``);` `        ``st.push(``2``);` `        ``st.push(``3``);` `        ``System.out.println(``"current size: "` `+ st.size());` `        ``System.out.println(st.top());` `        ``st.pop();` `        ``System.out.println(st.top());` `        ``st.pop();` `        ``System.out.println(st.top());` `        ``System.out.println(``"current size: "` `+ st.size());` `    ``}` `}`   `// This code is contributed by Susobhan Akhuli`

## Python3

 `# Python Program to implement a stack` `# using dequeue`   `from` `collections ``import` `deque`   `# Define the Stack class` `class` `Stack:` `    ``def` `__init__(``self``):` `        ``# Create an empty dequeue` `        ``self``.dequeue ``=` `deque()`   `    ``def` `push(``self``, item):` `        ``# Append the item to the end of the dequeue` `        ``self``.dequeue.append(item)`   `    ``def` `pop(``self``):` `        ``# Remove and return the item from the end of the dequeue` `        ``return` `self``.dequeue.pop()` `    `  `    ``def` `size(``self``):` `          ``# Return size of dequeue` `        ``return` `len``(``self``.dequeue)`   `    ``def` `is_empty(``self``):` `        ``# Return True if the dequeue is empty, and False otherwise` `        ``return` `not` `self``.dequeue`   `    ``def` `top(``self``):` `        ``# Return the item at the top of the stack without removing it.` `        ``if` `self``.is_empty():` `            ``# If the stack is empty, return None` `            ``return` `None` `        ``else``:` `            ``# Return the last item in the dequeue` `            ``return` `self``.dequeue[``-``1``]`   `if` `__name__ ``=``=` `'__main__'``:` `    ``st ``=` `Stack()` `    ``st.push(``1``)` `    ``st.push(``2``)` `    ``st.push(``3``)` `    ``print``(``"current size:"``, st.size())` `    ``print``(st.top())` `    ``st.pop()` `    ``print``(st.top())` `    ``st.pop()` `    ``print``(st.top())` `    ``print``(``"current size:"``, st.size())`   `# This code is contributed by Susobhan Akhuli`

## C#

 `// C# Program to implement a stack` `// using dequeue` `using` `System;` `using` `System.Collections.Generic;`   `class` `Stack {` `    ``private` `LinkedList<``int``> list = ``new` `LinkedList<``int``>();`   `    ``public` `void` `Push(``int` `item)` `    ``{` `        ``// Append the item to the end of the linked list` `        ``list.AddLast(item);` `    ``}`   `    ``public` `int` `Pop()` `    ``{` `        ``// Remove and return the item from the end of the` `        ``// linked list` `        ``int` `item = list.Last.Value;` `        ``list.RemoveLast();` `        ``return` `item;` `    ``}`   `    ``public` `int` `Size()` `    ``{` `        ``// Return the size of the linked list` `        ``return` `list.Count;` `    ``}`   `    ``public` `bool` `IsEmpty()` `    ``{` `        ``// Return true if the linked list is empty, and` `        ``// false otherwise` `        ``return` `list.Count == 0;` `    ``}`   `    ``public` `int` `Top()` `    ``{` `        ``if` `(IsEmpty()) {` `            ``// If the stack is empty, return -1` `            ``return` `-1;` `        ``}` `        ``else` `{` `            ``// Return the last item in the linked list` `            ``return` `list.Last.Value;` `        ``}` `    ``}` `}`   `class` `Program {` `    ``static` `void` `Main(``string``[] args)` `    ``{` `        ``Stack st = ``new` `Stack();` `        ``st.Push(1);` `        ``st.Push(2);` `        ``st.Push(3);` `        ``Console.WriteLine(``"current size: "` `+ st.Size());` `        ``Console.WriteLine(st.Top());` `        ``st.Pop();` `        ``Console.WriteLine(st.Top());` `        ``st.Pop();` `        ``Console.WriteLine(st.Top());` `        ``Console.WriteLine(``"current size: "` `+ st.Size());` `    ``}` `}`   `// This code is contributed by Susobhan Akhuli`

## Javascript

 ``

Output

```current size: 3
3
2
1
current size: 1

```
• Using a Circular Queue:
In this method, we use a Circular Queue to implement the Stack. We keep track of the front and rear indices, and whenever we need to push an element, we simply increase the rear index and add the element to the rear position. To pop an element, we simply decrease the rear index.

## C++

 `// CPP program for above approach` `#include ` `using` `namespace` `std;`   `class` `Stack {`   `    ``// Indices to keep track of the front, rear and size of` `    ``// the queue` `    ``int` `front, rear, size;`   `    ``// Maximum capacity of the queue` `    ``unsigned capacity;`   `    ``// Pointer to the array used to store the elements` `    ``int``* arr;`   `public``:` `    ``Stack(unsigned capacity)` `    ``{` `        ``this``->capacity = capacity;`   `        ``// Initially, front index and size are set to 0` `        ``front = size = 0;`   `        ``// Rear index is set to the last index of the array` `        ``rear = capacity - 1;`   `        ``// Dynamic allocation of memory for the array` `        ``arr = ``new` `int``[``this``->capacity];` `    ``}`   `    ``bool` `isFull()` `    ``{` `        ``// If size is equal to the capacity, the queue is` `        ``// full` `        ``return` `(size == capacity);` `    ``}`   `    ``bool` `isEmpty()` `    ``{` `        ``// If size is 0, the queue is empty` `        ``return` `(size == 0);` `    ``}`   `    ``void` `push(``int` `x)` `    ``{` `        ``if` `(isFull())` `            ``// If the queue is full, return without adding` `            ``// the element` `            ``return``;`   `        ``// Increase the rear index by 1 (with wraparound)` `        ``rear = (rear + 1) % capacity;`   `        ``// Add the element to the rear position` `        ``arr[rear] = x;`   `        ``// Increase the size of the queue by 1` `        ``size++;` `    ``}`   `    ``void` `pop()` `    ``{` `        ``if` `(isEmpty())` `            ``return``; ``// If the queue is empty, return without` `                    ``// doing anything`   `        ``// Increase the front index by 1 (with wraparound)` `        ``front = (front + 1) % capacity;`   `        ``// Decrease the size of the queue by 1` `        ``size--;` `    ``}`   `    ``int` `top()` `    ``{` `        ``if` `(isEmpty())` `            ``// If the queue is empty, return -1` `            ``return` `-1;`   `        ``// Return the element at the front position` `        ``return` `arr[front];` `    ``}`   `    ``int` `getSize()` `    ``{` `        ``// Return the current size of the queue` `        ``return` `size;` `    ``}` `};`   `int` `main()` `{` `    ``// Create a stack of maximum size 3` `    ``Stack s(3);`   `    ``s.push(1);` `    ``s.push(2);` `    ``s.push(3);`   `    ``cout << ``"current size: "` `<< s.getSize() << endl;` `    ``cout << s.top() << endl;` `    ``s.pop();` `    ``cout << s.top() << endl;` `    ``s.pop();` `    ``cout << s.top() << endl;`   `    ``cout << ``"current size: "` `<< s.getSize() << endl;` `    ``return` `0;` `}`   `// This code is contributed by Susobhan Akhuli`

## Java

 `// Java program for above approach` `import` `java.util.*;`   `class` `Stack {` `    ``// Indices to keep track of the front, rear and size of` `    ``// the queue` `    ``private` `int` `front, rear, size;`   `    ``// Maximum capacity of the queue` `    ``private` `int` `capacity;`   `    ``// Array used to store the elements` `    ``private` `int``[] arr;`   `    ``public` `Stack(``int` `capacity)` `    ``{` `        ``this``.capacity = capacity;`   `        ``// Initially, front index and size are set to 0` `        ``front = size = ``0``;`   `        ``// Rear index is set to the last index of the array` `        ``rear = capacity - ``1``;`   `        ``// Dynamic allocation of memory for the array` `        ``arr = ``new` `int``[``this``.capacity];` `    ``}`   `    ``public` `boolean` `isFull()` `    ``{` `        ``// If size is equal to the capacity, the queue is` `        ``// full` `        ``return` `(size == capacity);` `    ``}`   `    ``public` `boolean` `isEmpty()` `    ``{` `        ``// If size is 0, the queue is empty` `        ``return` `(size == ``0``);` `    ``}`   `    ``public` `void` `push(``int` `x)` `    ``{` `        ``if` `(isFull())` `            ``// If the queue is full, return without adding` `            ``// the element` `            ``return``;`   `        ``// Increase the rear index by 1 (with wraparound)` `        ``rear = (rear + ``1``) % capacity;`   `        ``// Add the element to the rear position` `        ``arr[rear] = x;`   `        ``// Increase the size of the queue by 1` `        ``size++;` `    ``}`   `    ``public` `void` `pop()` `    ``{` `        ``if` `(isEmpty())` `            ``return``; ``// If the queue is empty, return without` `                    ``// doing anything`   `        ``// Increase the front index by 1 (with wraparound)` `        ``front = (front + ``1``) % capacity;`   `        ``// Decrease the size of the queue by 1` `        ``size--;` `    ``}`   `    ``public` `int` `top()` `    ``{` `        ``if` `(isEmpty())` `            ``// If the queue is empty, return -1` `            ``return` `-``1``;`   `        ``// Return the element at the front position` `        ``return` `arr[front];` `    ``}`   `    ``public` `int` `getSize()` `    ``{` `        ``// Return the current size of the queue` `        ``return` `size;` `    ``}` `}`   `public` `class` `GFG {` `    ``public` `static` `void` `main(String[] args) {`   `        ``// Create a stack of maximum size 3` `        ``Stack s = ``new` `Stack(``3``);`   `        ``s.push(``1``);` `        ``s.push(``2``);` `        ``s.push(``3``);`   `        ``System.out.println(``"current size: "` `+ s.getSize());` `        ``System.out.println(s.top());` `        ``s.pop();` `        ``System.out.println(s.top());` `        ``s.pop();` `        ``System.out.println(s.top());`   `        ``System.out.println(``"current size: "` `+ s.getSize());` `    ``}` `}`   `// This code is contributed by Susobhan Akhuli`

Output

```current size: 3
1
2
3
current size: 1

```

References:
Implement Stack using Two Queues