Skip to content
Related Articles

Related Articles

Implement sigmoid function using Numpy

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 03 Oct, 2019

With the help of Sigmoid activation function, we are able to reduce the loss during the time of training because it eliminates the gradient problem in machine learning model while training.




# Import matplotlib, numpy and math
import matplotlib.pyplot as plt
import numpy as np
import math
  
x = np.linspace(-10, 10, 100)
z = 1/(1 + np.exp(-x))
  
plt.plot(x, z)
plt.xlabel("x")
plt.ylabel("Sigmoid(X)")
  
plt.show()

Output :

Example #1 :




# Import matplotlib, numpy and math
import matplotlib.pyplot as plt
import numpy as np
import math
  
x = np.linspace(-100, 100, 200)
z = 1/(1 + np.exp(-x))
  
plt.plot(x, z)
plt.xlabel("x")
plt.ylabel("Sigmoid(X)")
  
plt.show()

Output :


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!