Trigonometric identities are equations that are true for every value of the variable in the domain and relate to various trigonometric functions. These are the qualities that exist for all values of the variables in the equation. Sine, cosine, tangent, cosecant, secant, and cotangent are the trigonometric ratios used in these identities. Right triangle sides, such as an adjacent side, opposite side, and hypotenuse side, are used to determine all of these trigonometric ratios. These trigonometric identities are only valid in a right-angle triangle.
Sine Cosine identity
In trigonometry, the sine cosine identity is a Pythagorean trigonometric identity as it forms its basis on the Pythagoras theorem. It states that the sum of squares of sine and cosine for any angle θ is unity.
sin2 θ + cos2 θ = 1
Derivation
Consider a right triangle ABC with angle θ between its base and hypotenuse.
Applying Pythagoras theorem on this triangle, we get
AC2 = AB2 + BC2
Dividing both sides by AC2, we get
AC2/AC2 = AB2/AC2 + BC2/AC2
(AB/AC)2 + (BC/AC)2 = 1 ⇢ (1)
We know, for angle θ,
sin θ = Perpendicular/Hypotenuse
sin θ = AB/AC ⇢ (2)
Also,
cos θ = Base/Hypotenuse
cos θ = BC/AC⇢ (3)
Using (2) and (3) in (1),
sin2 θ + cos2 θ = 1
This proves the identity of sine and cosine ratios.
If x sin θ – y cos θ = √(x2 + y2) and cos2 θ/a2 + sin2 θ/b2 = 1/(x2 + y2), then prove that y2/a2 + x2/b2 = 1.
Solution:
x sin θ – y cos θ = √(x2 + y2)
Squaring both sides we get,
=> x2 sin2 θ + y2 cos2 θ – 2xy sin θ cos θ = x2 + y2
=> x2 sin2 θ + y2 cos2 θ – 2xy sin θ cos θ – x2 – y2 = 0
=> x2 (sin2 θ – 1) + y2 (cos2 θ -1) – 2xy sin θ cos θ = 0
=> – x2 cos2 θ – y2 sin2 θ – 2xy sin θ cos θ = 0
=> x2 cos2 θ + y2 sin2 θ + 2xy sin θ cos θ = 0
=> (x cos θ + y sin θ)2 = 0
=> x cos θ = -y sin θ
=> x/sin θ = -y/cos θ
=> x2/sin2 θ = y2/cos2 θ
=> tan2 θ = x2/y2
=> sin2 θ = x2/(x2 + y2) and cos2 θ = y2/(x2 + y2)
Put the above values in the equation cos2 θ/a2 + sin2 θ/b2 = 1/(x2 + y2).
=> (y2/(x2 + y2))/a2 + (x2/(x2 + y2))/b2 = 1/(x2 + y2)
=> y2/a2 + x2/b2 = 1
Similar problems
Problem 1: If x = a cos θ − b sin θ and y = a sin θ + b cos θ, then prove that x2 + y2 = a2 + b2.
Solution:
x = a cos θ − b sin θ and y = a sin θ + b cos θ
Here, LHS = x2 + y2
= (a cos θ − b sin θ)2 + (a sin θ + b cos θ)2
= a2 cos2 θ + b2 sin2 θ – 2ab cos θ sin θ + a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ
= a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ)
= a2 + b2
= RHS
Hence proved.
Problem 2: If x = a sin θ + b cos θ and y = a cos θ − b sin θ, prove that x2 + y2 = a2 + b2.
Solution:
x = a sin θ + b cos θ and y = a cos θ – b sin θ.
Here, LHS = x2 + y2
= (a sin θ + b cos θ)2 + (a cos θ – b sin θ)2
= a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ + a2 cos2 θ + b2 sin2 θ – 2ab cos θ sin θ
= a2 (sin2 θ + cos2 θ) + b2 (cos2 θ + sin2 θ)
= a2 + b2
= RHS
Hence proved.
Problem 3: If x/a cos θ + y/b sin θ = 1 and x/a sin θ – y/b cos θ = 1, prove that x2/a2 + y2/b2 = 2.
Solution:
x/a cos θ + y/b sin θ = 1
Squaring both sides, we get
x2/a2 cos2 θ + y2/b2 sin2 θ + 2 (x/a) (y/b) cos θ sin θ = 1 ⇢ (1)
Also, we are given,
x/a sin θ – y/b cos θ = 1
Squaring both sides, we get
x2/a2 sin2 θ + y2/b2 cos2 θ – 2 (x/a) (y/b) cos θ sin θ = 1 ⇢ (2)
Adding (1) and (2),
x2/a2 cos2 θ + y2/b2 sin2 θ + 2 (x/a) (y/b) cos θ sin θ + x2/a2 sin2 θ + y2/b2 cos2 θ – 2 (x/a) (y/b) cos θ sin θ = 1 + 1
x2/a2 (cos2 θ + sin2 θ) + y2/b2 (sin2 θ + cos2 θ) = 2
x2/a2 + y2/b2 = 2
Hence proved.
Problem 4: If x/a sin θ + y/b cos θ = 1 and x/a cos θ – y/b sin θ = 1, prove that x2/a2 + y2/b2 = 2.
Solution:
x/a sin θ + y/b cos θ = 1
Squaring both sides, we get
x2/a2 sin2 θ + y2/b2 cos2 θ + 2 (x/a) (y/b) sin θ cos θ = 1 ⇢ (1)
Also,
x/a cos θ – y/b sin θ = 1
Squaring both sides, we get
x2/a2 cos2 θ + y2/b2 sin2 θ – 2 (x/a) (y/b) cos θ sin θ = 1 ⇢ (2)
Adding (1) and (2) gives,
x2/a2 sin2 θ + y2/b2 cos2 θ + 2 (x/a) (y/b) cos θ sin θ + x2/a2 cos2 θ + y2/b2 sin2 θ – 2 (x/a) (y/b) cos θ sin θ = 1 + 1
x2/a2 (sin2 θ + cos2 θ) + y2/b2 (cos2 θ + sin2 θ) = 2
x2/a2 + y2/b2 = 2
Hence proved.
Problem 5: If x = a cos2 θ sin θ and y = a sin2 θ cos θ, then prove that (x2 + y2)3/(x2 y2) = a2.
Solution:
x = a cos2 θ sin θ and y = a sin2 θ cos θ
Here, LHS = (x2 + y2)3/(x2 y2)
= (a2 cos4 θ sin2 θ + a2 sin4 θ cos2 θ)3/[(a2 cos4 θ sin2 θ) (a2 sin4 θ cos2 θ)]
= (a2 cos2 θ sin2 θ (sin2 θ + cos2 θ))3/(a4 cos6 θ sin6 θ)
= (a2 cos2 θ sin2 θ)3/(a4 cos6 θ sin6 θ)
= (a6 cos6 θ sin6 θ)/(a4 cos6 θ sin6 θ)
= a2
Hence proved.
Problem 6: Prove that (1 – sin θ)/(1 + sin θ) = (sec θ – tan θ)2.
Solution:
LHS = (1 – sin θ)/(1 + sin θ)
= ((1 – sin θ) (1 – sin θ))/((1 + sin θ) (1 – sin θ))
= (1 – sin θ)2/(1 – sin2 θ)
= (1 – sin θ)2/(cos2 θ)
= ((1 – sin θ)/(cos θ))2
= (sec θ – tan θ)2
= RHS
Hence proved.
Problem 7: Prove that: cos θ/(1 – tan θ) – sin θ/(1 – cot θ) = 1/(cos θ – sin θ).
Solution:
LHS = cos θ/(1 – tan θ) – sin θ/(1 – cot θ)
= cos θ/(1 – sin θ/cos θ) – sin θ/(1 – cos θ/sin θ)
= cos2 θ/(cos θ – sin θ) + sin2 θ (cos θ – sin θ)
= (cos2 θ + sin2 θ)/(cos θ – sin θ)
= 1/(cos θ – sin θ)
= RHS
Hence proved.
Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape,
GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out -
check it out now!
Last Updated :
27 Apr, 2022
Like Article
Save Article