Icosikaienneagonal Number
An icosikaienneagonal number is a class of figurate numbers. It has 29 – sided polygon called icosikaienneagon. The N-th icosikaienneagonal number count’s the 29 number of dots and all other dots are surrounding with a common sharing corner and make a pattern.
The first few icosikaienneagonol numbers are
1, 29, 84, 166 …
Find the Nth icosikaienneagonal number
Given a number N, the task is to find Nth icosikaienneagonal number.
Examples:
Input: N = 2
Output: 29
Explanation:
The second icosikaienneagonol number is 29.
Input: N = 3
Output: 84
Approach:
- In mathematics, the N-th s-sided polygon number is given by the formula:
- Therefore Nth term of 29 sided polygon is
Below is the implementation of the above approach:
C++
// C++ implementation for // above approach #include <iostream> using namespace std; // Function to Find the Nth // icosikaienneagonal Number int icosikaienneagonalNum( int n) { return (27 * n * n - 25 * n) / 2; } // Driver Code int main() { int n = 3; cout << icosikaienneagonalNum(n); return 0; } |
Java
// Java implementation for // above approach class GFG{ // Function to Find the Nth // icosikaienneagonal Number static int icosikaienneagonalNum( int n) { return ( 27 * n * n - 25 * n) / 2 ; } // Driver Code public static void main(String args[]) { int n = 3 ; System.out.print(icosikaienneagonalNum(n)); } } // This code is contributed by Code_Mech |
Python 3
# Python3 implementation for # above approach # Function to Find the Nth # icosikaienneagonal Number def icosikaienneagonalNum(n): return ( 27 * n * n - 25 * n) / / 2 # Driver Code # Given N N = 3 print (icosikaienneagonalNum(N)) # This code is contributed by Vishal Maurya |
C#
// C# implementation for // above approach using System; class GFG{ // Function to Find the Nth // icosikaienneagonal Number static int icosikaienneagonalNum( int n) { return (27 * n * n - 25 * n) / 2; } // Driver Code public static void Main() { int n = 3; Console.Write(icosikaienneagonalNum(n)); } } // This code is contributed by Code_Mech |
Javascript
<script> // Javascript implementation for // above approach // Function to Find the Nth // icosikaienneagonal Number function icosikaienneagonalNum( n) { return (27 * n * n - 25 * n) / 2; } // Driver Code let n = 3; document.write(icosikaienneagonalNum(n)); // This code is contributed by Rajput-Ji </script> |
Output:
84
Time Complexity: O(1)
Auxiliary Space: O(1)
Please Login to comment...