Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Icosihexagonal Number

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a number N, the task is to find Nth Icosihexagon number.
 

An Icosihexagon number is class of figurate number. It has 26 – sided polygon called Icosihexagon. The N-th Icosihexagonal number count’s the 26 number of dots and all other dots are surrounding with a common sharing corner and make a pattern. The first few Icosihexagonol numbers are 1, 26, 75, 148 … 
 

Examples: 
 

Input: N = 2 
Output: 26 
Explanation: 
The second Icosihexagonol number is 26. 
Input: N = 3 
Output: 75 
 

 

Approach: The N-th Icosihexagonal number is given by the formula:
 

  • Nth term of s sided polygon = \frac{((s-2)n^2 - (s-4)n)}{2}
     
  • Therefore Nth term of 26 sided polygon is
     

Tn =\frac{((26-2)n^2 - (26-4)n)}{2} =\frac{(24n^2 - 22n)}{2}

  •  

Below is the implementation of the above approach:
 

C++




// C++ program for above approach
#include <bits/stdc++.h>
using namespace std;
 
// Finding the nth Icosihexagonal Number
int IcosihexagonalNum(int n)
{
    return (24 * n * n - 22 * n) / 2;
}
 
// Driver Code
int main()
{
    int n = 3;
    cout << "3rd Icosihexagonal Number is = "
         << IcosihexagonalNum(n);
 
    return 0;
}
 
// This code is contributed by Code_Mech

C




// C program for above approach
#include <stdio.h>
#include <stdlib.h>
 
// Finding the nth Icosihexagonal Number
int IcosihexagonalNum(int n)
{
    return (24 * n * n - 22 * n) / 2;
}
 
// Driver program to test above function
int main()
{
    int n = 3;
    printf("3rd Icosihexagonal Number is = %d",
           IcosihexagonalNum(n));
 
    return 0;
}

Java




// Java program for above approach
class GFG{
     
// Finding the nth icosihexagonal number
public static int IcosihexagonalNum(int n)
{
    return (24 * n * n - 22 * n) / 2;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 3;
     
    System.out.println("3rd Icosihexagonal Number is = " +
                                    IcosihexagonalNum(n));
}
}
 
// This code is contributed by divyeshrabadiya07

Python3




# Python3 program for above approach
 
# Finding the nth Icosihexagonal Number
def IcosihexagonalNum(n):
 
    return (24 * n * n - 22 * n) // 2
 
# Driver Code
n = 3
print("3rd Icosihexagonal Number is = ",
                   IcosihexagonalNum(n))
 
# This code is contributed by divyamohan123

C#




// C# program for above approach
using System;
 
class GFG{
     
// Finding the nth icosihexagonal number
public static int IcosihexagonalNum(int n)
{
    return (24 * n * n - 22 * n) / 2;
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 3;
     
    Console.WriteLine("3rd Icosihexagonal Number is = " +
                                   IcosihexagonalNum(n));
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// javascript program for above approach
 
 
// Finding the nth Icosihexagonal Number
function IcosihexagonalNum( n)
{
    return (24 * n * n - 22 * n) / 2;
}
 
// Driver code
let n = 3;
document.write("3rd Icosihexagonal Number is " + IcosihexagonalNum(n));
 
// This code contributed by gauravrajput1
 
</script>

Output: 

3rd Icosihexagonal Number is = 75

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Reference: https://en.wikipedia.org/wiki/Icosihexagon

 


My Personal Notes arrow_drop_up
Last Updated : 22 Jun, 2021
Like Article
Save Article
Similar Reads
Related Tutorials