Skip to content
Related Articles

Related Articles

Improve Article

How to set the spacing between subplots in Matplotlib in Python?

  • Last Updated : 26 Dec, 2020

In this article, we will see how to set the spacing between subplots in Matplotlib in Python. Let’s discuss some concepts :

  • Matplotlib : Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack. It was introduced by John Hunter in the year 2002.
  • Subplots : The subplots() function in pyplot module of matplotlib library is used to create a figure and a set of subplots. Subplots are required when we want to show two or more plots in same figure.

Here, first we will see why setting of space is required.

Python3




# importing packages
import numpy as np
import matplotlib.pyplot as plt
  
# create data
x=np.array([1, 2, 3, 4, 5])
  
# making subplots
fig, ax = plt.subplots(2, 2)
  
# set data with subplots and plot
ax[0, 0].plot(x, x)
ax[0, 1].plot(x, x*2)
ax[1, 0].plot(x, x*x)
ax[1, 1].plot(x, x*x*x)
plt.show()

Output:

Too much congested and very confusing

As, we can see that the above figure axes values are too congested and very confusing. To solve this problem we need to set the spacing between subplots. 



Steps Needed 

  1. Import Libraries
  2. Create/ Load data
  3. Make subplot
  4. Plot subplot
  5. Set spacing between subplots.

To do such thing, we can use some methods that are explained below in the form of examples : 

Example 1: (Using tight_layout() method)

The tight_layout() method automatically maintains the proper space between subplots.

Python3




# importing packages
import numpy as np
import matplotlib.pyplot as plt
  
# create data
x=np.array([1, 2, 3, 4, 5])
  
# making subplots
fig, ax = plt.subplots(2, 2)
  
# set data with subplots and plot
ax[0, 0].plot(x, x)
ax[0, 1].plot(x, x*2)
ax[1, 0].plot(x, x*x)
ax[1, 1].plot(x, x*x*x)
  
# set the spacing between subplots
fig.tight_layout()
plt.show()

Output: 

Example 2: (Using subplots_adjust() method)

We can use the plt.subplots_adjust() method to change the space between Matplotlib subplots. The parameters wspace and hspace specify the space reserved between Matplotlib subplots. They are the fractions of axis width and height, respectively. And the parameters left, right, top and bottom parameters specify four sides of the subplots’ positions. They are the fractions of the width and height of the figure.



Python3




# importing packages
import numpy as np
import matplotlib.pyplot as plt
  
# create data
x=np.array([1, 2, 3, 4, 5])
  
# making subplots
fig, ax = plt.subplots(2, 2)
  
# set data with subplots and plot
ax[0, 0].plot(x, x)
ax[0, 1].plot(x, x*2)
ax[1, 0].plot(x, x*x)
ax[1, 1].plot(x, x*x*x)
  
# set the spacing between subplots
plt.subplots_adjust(left=0.1,
                    bottom=0.1
                    right=0.9
                    top=0.9
                    wspace=0.4
                    hspace=0.4)
plt.show()

Output: 

Example 3: (Using subplots_tool() method)

This method launches a subplot tool window for a figure. It provides an interactive method for the user to drag the bar in the subplot_tool to change the subplots’ layout.

Python3




# importing packages
import numpy as np
import matplotlib.pyplot as plt
  
# create data
x=np.array([1, 2, 3, 4, 5])
  
# making subplots
fig, ax = plt.subplots(2, 2)
  
# set data with subplots and plot
ax[0, 0].plot(x, x)
ax[0, 1].plot(x, x*2)
ax[1, 0].plot(x, x*x)
ax[1, 1].plot(x, x*x*x)
  
# set the spacing between subplots
plt.subplot_tool()
plt.show()

Output: 

Example 4: (Using constrained_layout=True)

Python3




# importing packages
import numpy as np
import matplotlib.pyplot as plt
  
# create data
x=np.array([1, 2, 3, 4, 5])
  
# making subplots with constrained_layout=True
fig, ax = plt.subplots(2, 2
                       constrained_layout = True)
  
# set data with subplots and plot
ax[0, 0].plot(x, x)
ax[0, 1].plot(x, x*2)
ax[1, 0].plot(x, x*x)
ax[1, 1].plot(x, x*x*x)
plt.show()

Output: 

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :