Skip to content
Related Articles

Related Articles

How to Select Rows from Pandas DataFrame?
  • Last Updated : 10 Jul, 2020

pandas.DataFrame.loc is a function used to select rows from Pandas DataFrame based on the condition provided. In this article, let’s learn to select the rows from Pandas DataFrame based on some conditions.

Syntax: df.loc[df[‘cname’] ‘condition’]

Parameters:
df: represents data frame
cname: represents column name
condition: represents condition on which rows has to be selected

Example 1:




# Importing pandas as pd
from pandas import DataFrame
  
# Creating a data frame
cart = {'Product': ['Mobile', 'AC', 'Laptop', 'TV', 'Football'],
        'Type': ['Electronic', 'HomeAppliances', 'Electronic'
                 'HomeAppliances', 'Sports'],
        'Price': [10000, 35000, 50000, 30000, 799]
       }
  
df = DataFrame(cart, columns = ['Product', 'Type', 'Price'])
  
# Print original data frame
print("Original data frame:\n")
print(df)
  
# Selecting the product of Electronic Type
select_prod = df.loc[df['Type'] == 'Electronic']
  
print("\n")
  
# Print selected rows based on the condition
print("Selecting rows:\n")
print (select_prod)

Output:

Example 2:






# Importing pandas as pd
from pandas import DataFrame
  
# Creating a data frame
cart = {'Product': ['Mobile', 'AC', 'Laptop', 'TV', 'Football'],
        'Type': ['Electronic', 'HomeAppliances', 'Electronic',
                 'HomeAppliances', 'Sports'],
        'Price': [10000, 35000, 50000, 30000, 799]
       }
  
df = DataFrame(cart, columns = ['Product', 'Type', 'Price'])
  
# Print original data frame
print("Original data frame:\n")
print(df)
  
# Selecting the product of HomeAppliances Type
select_prod = df.loc[df['Type'] == 'HomeAppliances']
  
print("\n")
  
# Print selected rows based on the condition
print("Selecting rows:\n")
print (select_prod)

Output:

Example 3:




# Importing pandas as pd
from pandas import DataFrame
  
# Creating a data frame
cart = {'Product': ['Mobile', 'AC', 'Laptop', 'TV', 'Football'],
        'Type': ['Electronic', 'HomeAppliances', 'Electronic',
                 'HomeAppliances', 'Sports'],
        'Price': [10000, 35000, 50000, 30000, 799]
       }
  
df = DataFrame(cart, columns = ['Product', 'Type', 'Price'])
  
# Print original data frame
print("Original data frame:\n")
print(df)
  
# Selecting the product of Price greater 
# than or equal to 25000
select_prod = df.loc[df['Price'] >= 25000]
  
print("\n")
  
# Print selected rows based on the condition
print("Selecting rows:\n")
print (select_prod)

Output:

Example 4:




# Importing pandas as pd
from pandas import DataFrame
  
# Creating a data frame
cart = {'Product': ['Mobile', 'AC', 'Laptop', 'TV', 'Football'],
        'Type': ['Electronic', 'HomeAppliances', 'Electronic',
                 'HomeAppliances', 'Sports'],
        'Price': [10000, 35000, 30000, 30000, 799]
       }
  
df = DataFrame(cart, columns = ['Product', 'Type', 'Price'])
  
# Print original data frame
print("Original data frame:\n")
print(df)
  
# Selecting the product of Price not 
# equal to 30000
select_prod = df.loc[df['Price'] != 30000]
  
print("\n")
  
# Print selected rows based on the condition
print("Selecting rows:\n")
print (select_prod)

Output:

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :