In this article, we will see how to remove random symbols in a dataframe in Pandas.
Method 1: Selecting columns
Syntax: dataframe[colunms].replace({symbol:},regex=True)
First, select the columns which have a symbol that needs to be removed. And inside the method replace() insert the symbol example replace(“h”:””)
Python3
import pandas as pd df = pd.DataFrame({ 'A' : [ 1 , 2 , 3 ], 'B' : [ 4 , 5 , 6 ], 'C' : [ 'f;' , 'd:' , 'sda;sd' ], 'D' : [ 's' , 'd;' , 'd;p' ], 'E' : [ 5 , 3 , 6 ], 'F' : [ 7 , 4 , 3 ]}) print (df) cols_to_check = [ 'C' , 'D' , 'E' ] print (df[cols_to_check]) df[cols_to_check] = df[cols_to_check].replace({ ';' : ''}, regex = True ) print (df) |
Output:
Method 2: Using dataframe.iloc
Syntax:
dataframe.iloc[].replace({caracter},regex=True)
In this method, you use dataframe.iloc[] to change the symbols.
Python3
import pandas as pd df = pd.DataFrame({ 'A' : [ 1 , 2 , 3 ], 'B' : [ 4 , 5 , 6 ], 'C' : [ 'f;' , 'd:' , 'sda;sd' ], 'D' : [ 's' , 'd;' , 'd;p' ], 'E' : [ 5 , 3 , 6 ], 'F' : [ 7 , 4 , 3 ]}) print (df) cols_to_check = [ 'C' , 'D' , 'E' ] print (df.iloc[[ 0 , 2 ]]) df.iloc[[ 0 , 2 ]] = df.iloc[[ 0 , 2 ]].replace({ ';' : ''}, regex = True ) print (df) |
Output:
Method 3: Using dataframe.loc[]
Syntax:
dataframe.loc[].replace({caracter},regex=True)
Python3
import pandas as pd df = pd.DataFrame({ 'A' : [ 1 , 2 , 3 ], 'B' : [ 4 , 5 , 6 ], 'C' : [ 'f;' , 'd:' , 'sda;sd' ], 'D' : [ 's' , 'd;' , 'd;p' ], 'E' : [ 5 , 3 , 6 ], 'F' : [ 7 , 4 , 3 ]}) print (df) cols_to_check = [ 'C' , 'D' , 'E' ] print (df.loc[:, cols_to_check]) df.loc[:, cols_to_check] = df.loc[ :, cols_to_check].replace({ ';' : ''}, regex = True ) print (df) |
Output:
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.