How to Perform Univariate Analysis in R?
In this article, we will discuss how to perform Univariate Analysis in R Programming Language. Univariate Analysis means doing Analysis on one variable.
Summary Statistics
Summary statistics include:
- Minimum – Get the Minimum element
Syntax:
min(data)
- Maximum – Get the Maximum element
Syntax:
max(data)
- Mean – Get the mean of the given elements
Syntax:
mean(data)
- Median – Get the median of the given elements
Syntax:
median(data)
- Inter Quartile Range – Get the IQR of the given elements
Syntax:
IQR(data)
- Standard Deviation – Get the standard deviation of the given elements
Syntax:
sd(data)
- Range – Get range from the elements
Syntax:
max(data)-min(data)
Example: R program to create a vector with 10 elements and display the Summary statistics.
R
# create a vector with 10 elements data = c (1: 10) # display print (data) # minimum print ( min (data)) # maximum print ( max (data)) # mean print ( mean (data)) # median print ( median (data)) # IQR print ( IQR (data)) # range print ( max (data)- min (data)) # standard deviation print ( sd (data)) |
Output:
[1] 1 2 3 4 5 6 7 8 9 10 [1] 1 [1] 10 [1] 5.5 [1] 5.5 [1] 4.5 [1] 9 [1] 3.02765
Frequency Table
We can display the frequency table using table() method, This will return the count of element occurrence.
Syntax:
table(data)
Example:
R
# create a vector with 10 elements data = c (1: 10) # display print (data) # display frequency table print ( table (data)) |
Output:
Visualization
Here we can visualize the data using some plots
Boxplot
boxplot() function will result in a five-point summary(min, max, median, 1st quartile, 3rd quartile)
Syntax:
boxplot(data)
Example:
R
# create a vector with 10 elements data = c (1: 10) # display print (data) # display boxplot print ( boxplot (data)) |
Output:
[1] 1 2 3 4 5 6 7 8 9 10 $stats [,1] [1,] 1.0 [2,] 3.0 [3,] 5.5 [4,] 8.0 [5,] 10.0 attr(,"class") 1 "integer" $n [1] 10 $conf [,1] [1,] 3.001801 [2,] 7.998199 $out numeric(0) $group numeric(0) $names [1] "1"
Output:
Histogram
This will return the histogram of the data and the function used is hist()
Syntax:
hist(data)
Example:
R
# create a vector with 10 elements data = c (1: 10) # display print (data) # display histogram print ( hist (data)) |
Output:
[1] 1 2 3 4 5 6 7 8 9 10 $breaks [1] 0 2 4 6 8 10 $counts [1] 2 2 2 2 2 $density [1] 0.1 0.1 0.1 0.1 0.1 $mids [1] 1 3 5 7 9 $xname [1] "data" $equidist [1] TRUE attr(,"class") [1] "histogram"
Output:
Density plot
This will display the density plot . We have to use density() function along with plot() function.
Syntax:
plot(density(data))
Example:
R
# create a vector with 10 elements data = c (1: 10) # display print (data) # display density plot print ( plot ( density (data))) |
Output:
[1] 1 2 3 4 5 6 7 8 9 10 NULL
Please Login to comment...