Skip to content
Related Articles
Open in App
Not now

Related Articles

How to Order Pyspark dataframe by list of columns ?

Improve Article
Save Article
  • Last Updated : 07 Nov, 2022
Improve Article
Save Article

In this article, we are going to apply OrderBy with multiple columns over pyspark dataframe in Python. Ordering the rows means arranging the rows in ascending or descending order. 

Method 1: Using OrderBy()

OrderBy() function is used to sort an object by its index value.

Syntax: dataframe.orderBy([‘column1′,’column2′,’column n’], ascending=True).show()

where,

  • dataframe is the dataframe name created from the nested lists using pyspark
  • where columns are the list of columns
  • ascending=True specifies order the dataframe in increasing order, ascending=Falsespecifies order the dataframe in decreasing order
  • show() method id used to display the columns.

Let’s create a sample dataframe

Python3




# importing module
import pyspark
 
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
 
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
 
# list  of students  data
data = [["1", "sravan", "vignan"], ["2", "ojaswi", "vvit"],
        ["3", "rohith", "vvit"], ["4", "sridevi", "vignan"],
        ["1", "sravan", "vignan"], ["5", "gnanesh", "iit"]]
 
# specify column names
columns = ['student ID', 'student NAME', 'college']
 
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
 
print("Actual data in dataframe")
# show dataframe
dataframe.show()

Output:

Applying OrderBy with multiple columns

Python3




# show dataframe by sorting the dataframe
# based on two columns in ascending
# order using orderby() function
dataframe.orderBy(['student ID', 'student NAME'],
                  ascending=True).show()

Output:

Python3




# show dataframe by sorting the dataframe
# based on two columns in descending
# order using orderby() function
dataframe.orderBy(['student ID', 'student NAME'],
                  ascending=False).show()

Output:

Method 2: Using sort()

It takes the Boolean value as an argument to sort in ascending or descending order.

 Syntax: dataframe.sort([‘column1′,’column2′,’column n’],ascending=True).show()

where,

  1. dataframe is the dataframe name created from the nested lists using pyspark
  2. where columns are the llst of columns
  3. ascending=True specifies order the dataframe in increasing order,ascending=Falsespecifies order the dataframe in decreasing order
  4. show() method id used to display the columns.

Python3




# show dataframe by sorting the dataframe
# based on two columns in descending order
dataframe.sort(['college', 'student NAME'], ascending=False).show()

Output:


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!