Skip to content
Related Articles

Related Articles

Improve Article
How to Merge DataFrames of different length in Pandas ?
  • Last Updated : 28 Apr, 2021

In this article, we will discuss how to merge the two dataframes with different lengths in Pandas. It can be done using the merge() method.

Syntax:

DataFrame.merge(parameters)

Below are some examples that depict how to merge data frames of different lengths using the above method:

Example 1: 

Below is a program to merge two student data frames of different lengths.



Python3




# importing pandas module
  
import pandas as pd
  
# create a list that contains 
# student id of subject 1
list1 = [7058, 7059, 7075, 7076]
  
# create a list that contains
# student id of subject 2
list2 = [7058, 7059, 7012, 7075, 7076]
  
# create a list that contains 
# student names of subject 1
list11 = ["Sravan", "Jyothika", "Deepika",
          "Kyathi"]
  
# create a list that contains 
# student names of subject 2
list22 = ["Sravan", "Jyothika", "Salma"
          "Deepika", "Kyathi"]
  
  
# pass list1 and list11 to the
# dataframe1
dataframe1 = pd.DataFrame(
  {"Student ID": list1, "Student Name": list11})
print('First data frame:')
display(dataframe1)
  
# pass list2 and list22 to the
# dataframe1
dataframe2 = pd.DataFrame(
  {"Student ID": list2, "Student Name": list22})
print('Second data frame:')
display(dataframe2)
  
# apply merge function to merge the
# two dataframes
mergedf = dataframe2.merge(dataframe1, how='left')
print('Merged data frame:')
display(mergedf)

Output:

Example 2:

Here is another program to merge one data frame of length 4 and another dataframe of length 9.

Python3




# importing pandas module
import pandas as pd
  
# create a list that contains
# student id of subject 1
list1 = [7058, 7059, 7075, 7076]
  
# create a list that contains
# student id of subject 2
list2 = [7058, 7059, 7012, 7075, 7076,
         7034, 7046, 7036, 7015]
  
# create a list that contains
# student names of subject 1
list11 = ["Sravan", "Jyothika", "Deepika",
          "Kyathi"]
  
# create a list that contains
# student names of subject 2
list22 = ["Sravan", "Jyothika", "salma"
          "Deepika", "Kyathi", "meghana",
          "pranathi", "bhanu", "keshav"]
  
  
# pass list1 and list11 to the
# dataframe1
dataframe1 = pd.DataFrame(
  {"Student ID": list1, "Student Name": list11})
print('First data frame:')
display(dataframe1)
  
# pass list2 and list22 to the 
# dataframe1
dataframe2 = pd.DataFrame(
  {"Student ID": list2, "Student Name": list22})
print('Second data frame:')
display(dataframe2)
  
# apply merge function to merge
# the two dataframes
mergedf = dataframe2.merge(dataframe1, how='inner')
print('Merged data frame:')
display(mergedf)

Output:

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :