Skip to content
Related Articles

Related Articles

How to get column and row names in DataFrame?

View Discussion
Improve Article
Save Article
  • Difficulty Level : Hard
  • Last Updated : 22 Feb, 2022
View Discussion
Improve Article
Save Article

While analyzing the real datasets which are often very huge in size, we might need to get the rows or index names and columns names in order to perform certain operations. 

Note: For downloading the nba dataset used in the below examples Click Here 

Getting row names in Pandas dataframe

First, let’s create a simple dataframe with nba.csv 

Python3




# Import pandas package
import pandas as pd
   
# making data frame
data = pd.read_csv("nba.csv")
   
# calling head() method 
# storing in new variable
data_top = data.head(10)
   
# display
data_top

Output: 

Now let’s try to get the row name from the above dataset.

Method #1: Simply iterate over indices 

Python3




# Import pandas package
import pandas as pd
   
# making data frame
data = pd.read_csv("nba.csv")
 
# calling head() method 
# storing in new variable
data_top = data.head()
   
# iterating the columns
for row in data_top.index:
    print(row, end = " ")

Output: 

0 1 2 3 4 5 6 7 8 9 

  
Method #2: Using rows with dataframe object 

Python3




# Import pandas package
import pandas as pd
   
# making data frame
data = pd.read_csv("nba.csv")
 
# calling head() method 
# storing in new variable
data_top = data.head()
   
# list(data_top) or
list(data_top.index)

Output: 

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

  
Method #3: index.values method returns an array of indexes. 

Python3




# Import pandas package
import pandas as pd
   
# making data frame
data = pd.read_csv("nba.csv")
 
# calling head() method 
# storing in new variable
data_top = data.head()
   
list(data_top.index.values)

Output: 

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

  
Method #4: Using the tolist() method with values given the list of indexes. 

Python3




# Import pandas package
import pandas as pd
   
# making data frame
data = pd.read_csv("nba.csv")
 
# calling head() method 
# storing in new variable
data_top = data.head()
   
list(data_top.index.values.tolist())

Output: 

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Method #5: Count the number of rows in dataframe
Since we have loaded only 10 top rows of the dataframe using the head() method, let’s verify the total number of rows first.

Python3




# iterate the indices and print each one
for row in data.index:
    print(row, end = " ")

Output: 

Now, let’s print the total count of the index. 

Python3




# Import pandas package
import pandas as pd
   
# making data frame
data = pd.read_csv("nba.csv")
 
row_count = 0
 
# iterating over indices
for col in data.index:
    row_count += 1
 
# print the row count
print(row_count)

Output: 

458

Getting column names in Pandas dataframe

Now let’s try to get the columns name from the nba.csv dataset.
Method #1: Simply iterating over columns 

Python3




# Import pandas package
import pandas as pd
   
# making data frame
data = pd.read_csv("nba.csv")
 
# iterating the columns
for col in data.columns:
    print(col)

Output: 

  
Method #2: Using columns with dataframe object 

Python3




# Import pandas package
import pandas as pd
   
# making data frame
data = pd.read_csv("nba.csv")
   
# list(data) or
list(data.columns)

Output: 
 

  
Method #3: column.values method returns an array of indexes. 

Python3




# Import pandas package
import pandas as pd
   
# making data frame
data = pd.read_csv("nba.csv")
   
list(data.columns.values)

Output: 
 

  
Method #4: Using tolist() method with values with given the list of columns. 

Python3




# Import pandas package
import pandas as pd
   
# making data frame
data = pd.read_csv("nba.csv")
   
list(data.columns.values.tolist())

Output: 
 

  
Method #5: Using sorted() method
Sorted() method will return the list of columns sorted in alphabetical order. 

Python3




# Import pandas package
import pandas as pd
   
# making data frame
data = pd.read_csv("nba.csv")
   
# using sorted() method
sorted(data)

Output: 
 

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!