Skip to content
Related Articles

Related Articles

Improve Article

How to drop rows in Pandas DataFrame by index labels?

  • Last Updated : 11 Jun, 2021

Pandas provide data analysts a way to delete and filter data frame using .drop() method. Rows can be removed using index label or column name using this method.
 

Syntax: 
DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors=’raise’)
Parameters: 
labels: String or list of strings referring row or column name. 
axis: int or string value, 0 ‘index’ for Rows and 1 ‘columns’ for Columns. 
index or columns: Single label or list. index or columns are an alternative to axis and cannot be used together. 
level: Used to specify level in case data frame is having multiple level index. 
inplace: Makes changes in original Data Frame if True. 
errors: Ignores error if any value from the list doesn’t exists and drops rest of the values when errors = ‘ignore’
Return type: Dataframe with dropped values 
 

Now, Let’s create a sample dataframe 
 

Python3




# import pandas library
import pandas as pd
  
# dictionary with list object in values
details = {
    'Name' : ['Ankit', 'Aishwarya', 'Shaurya','Shivangi'],
    'Age' : [23, 21, 22,21],
    'University' : ['BHU', 'JNU', 'DU', 'BHU'],
}
  
# creating a Dataframe object
df = pd.DataFrame(details,columns = ['Name','Age','University'],
                  index = ['a', 'b', 'c', 'd'])
  
df

Output:
 



pandas-drop-row-1

Example #1: Delete a single Row in DataFrame by Row Index Label 
 

Python3




# import pandas library
import pandas as pd
 
# dictionary with list object in values
details = {
    'Name' : ['Ankit', 'Aishwarya', 'Shaurya', 'Shivangi'],
    'Age' : [23, 21, 22, 21],
    'University' : ['BHU', 'JNU', 'DU', 'BHU'],
}
 
# creating a Dataframe object
df = pd.DataFrame(details, columns = ['Name', 'Age', 'University'],
                  index = ['a', 'b', 'c', 'd'])
 
# return a new dataframe by dropping a
# row 'c' from dataframe
update_df = df.drop('c')
 
update_df

Output :
 

drop-rows-2

Example #2: Delete Multiple Rows in DataFrame by Index Labels 
 

Python3




# import pandas library
import pandas as pd
 
# dictionary with list object in values
details = {
    'Name' : ['Ankit', 'Aishwarya', 'Shaurya', 'Shivangi'],
    'Age' : [23, 21, 22, 21],
    'University' : ['BHU', 'JNU', 'DU', 'BHU'],
}
 
# creating a Dataframe object
df = pd.DataFrame(details, columns = ['Name', 'Age', 'University'],
                  index = ['a', 'b', 'c', 'd'])
 
# return a new dataframe by dropping a row
# 'b' & 'c' from dataframe
update_df = df.drop(['b', 'c'])
 
update_df

Output :
 



pandas-drop-row-3

Example #3: Delete a Multiple Rows by Index Position in DataFrame 
 

Python3




# import pandas library
import pandas as pd
 
# dictionary with list object in values
details = {
    'Name' : ['Ankit', 'Aishwarya', 'Shaurya', 'Shivangi'],
    'Age' : [23, 21, 22, 21],
    'University' : ['BHU', 'JNU', 'DU', 'BHU'],
}
 
# creating a Dataframe object
df = pd.DataFrame(details, columns = ['Name', 'Age', 'University'],
                  index = ['a', 'b', 'c', 'd'])
 
# return a new dataframe by dropping a row
# 'b' & 'c' from dataframe using their
# respective index position
update_df = df.drop([df.index[1], df.index[2]])
 
update_df

Output :
 

pandas-drop-row

Example #4: Delete rows from dataFrame in Place 
 

Python3




# import pandas library
import pandas as pd
 
# dictionary with list object in values
details = {
    'Name' : ['Ankit', 'Aishwarya', 'Shaurya', 'Shivangi'],
    'Age' : [23, 21, 22, 21],
    'University' : ['BHU', 'JNU', 'DU', 'BHU'],
}
 
# creating a Dataframe object
df = pd.DataFrame(details, columns = ['Name', 'Age', 'University'],
                  index = ['a', 'b', 'c', 'd'])
 
# dropping a row 'c' & 'd' from actual dataframe
df.drop(['c', 'd'], inplace = True )
 
df

Output :
 

pandas-drop-row-6

 

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :