Related Articles

# How to draw 2D Heatmap using Matplotlib in python?

• Last Updated : 26 Nov, 2020

A 2-D Heatmap is a data visualization tool that helps to represent the magnitude of the phenomenon in form of colors. In python, we can plot 2-D Heatmaps using Matplotlib package. There are different methods to plot 2-D Heatmaps, some of them are discussed below.

Method 1: Using matplotlib.pyplot.imshow() Function

Syntax: matplotlib.pyplot.imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None,
vmax=None, origin=None, extent=None, shape=<deprecated parameter>, filternorm=1, filterrad=4.0,
imlim=<deprecated parameter>, resample=None, url=None, \*, data=None, \*\*kwargs)

## Python3

 `# Program to plot 2-D Heat map``# using matplotlib.pyplot.imshow() method``import` `numpy as np``import` `matplotlib.pyplot as plt`` ` `data ``=` `np.random.random(( ``12` `, ``12` `))``plt.imshow( data , cmap ``=` `'autumn'` `, interpolation ``=` `'nearest'` `)`` ` `plt.title( ``"2-D Heat Map"` `)``plt.show()`

Output: Method 2: Using Seaborn Library

For this we use seaborn.heatmap() function

Syntax: seaborn.heatmap(data, *, vmin=None, vmax=None, cmap=None, center=None, robust=False,annot=None,
fmt=’.2g’, annot_kws=None, linewidths=0, linecolor=’white’, cbar=True, cbar_kws=None, cbar_ax=None,
square=False, xticklabels=’auto’, yticklabels=’auto’, mask=None, ax=None, **kwargs)

## Python3

 `# Program to plot 2-D Heat map``# using seaborn.heatmap() method``import` `numpy as np``import` `seaborn as sns``import` `matplotlib.pylab as plt`` ` `data_set ``=` `np.random.rand( ``10` `, ``10` `)``ax ``=` `sns.heatmap( data_set , linewidth ``=` `0.5` `, cmap ``=` `'coolwarm'` `)`` ` `plt.title( ``"2-D Heat Map"` `)``plt.show()`

Output: Method 3: Using matplotlib.pyplot.pcolormesh() Function

Syntax: matplotlib.pyplot.pcolormesh(*args, alpha=None, norm=None, cmap=None, vmin=None, vmax=None,

## Python3

 `# Program to plot 2-D Heat map``# using matplotlib.pyplot.pcolormesh() method``import` `matplotlib.pyplot as plt``import` `numpy as np`` ` `Z ``=` `np.random.rand( ``15` `, ``15` `)`` ` `plt.pcolormesh( Z , cmap ``=` `'summer'` `)`` ` `plt.title( ``'2-D Heat Map'` `)``plt.show()`

Output: Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up