Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

How to determine Period Range with Frequency in Pandas?

  • Last Updated : 25 May, 2021

In pandas, we can determine Period Range with Frequency with the help of period_range(). pandas.period_range() is one of the general functions in Pandas which is used to return a fixed frequency PeriodIndex, with day (calendar) as the default frequency.

Syntax: pandas.to_numeric(arg, errors=’raise’, downcast=None)

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Parameters:
start : Left bound for generating periods
end : Right bound for generating periods
periods : Number of periods to generate
freq : Frequency alias
name : Name of the resulting PeriodIndex

Returns: PeriodIndex

Example 1:

Python3






import pandas as pd
 
 
# initialize country
country = ["India", "Australia", "Pak", "Sri Lanka",
           "England", "Bangladesh"]
 
# perform period_range() function
match_date = pd.period_range('8/1/2020', '8/6/2020', freq='D')
 
# generates dataframes
df = pd.DataFrame(country, index=match_date, columns=['Country'])
 
df

Output:

 

Example

Python3




import pandas as pd
 
# initialize country
Course = ["DSA", "OOPS", "DBMS", "Computer Network",
          "System design", ]
 
# perform period_range() function
webinar_month = pd.period_range('8/1/2020', '12/1/2020', freq='M')
 
# generates dataframes
df = pd.DataFrame(Course, index=webinar_month, columns=['Course'])
 
df

 

 

Output:



 

 

Example 3:

 

Python3




import pandas as pd
 
 
# initialize gold price
gold_price = ["32k", "34k", "37k", "33k", "38k", "39k", "35k",
              "32k", "42k", "52k", "62k", "52k", "38k", "39k",
              "35k", "33k"]
 
# perform period_range() function
price_month = pd.period_range(start=pd.Period('2019Q1', freq='Q'),
                              end=pd.Period('2020Q2', freq='Q'),
                              freq='M')
 
# generates dataframes
df = pd.DataFrame(gold_price, index=price_month, columns=['Price'])
 
df

Output:

 




My Personal Notes arrow_drop_up