Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

How to Create Stacked area plot using Plotly in Python?

  • Last Updated : 10 Jul, 2020

Plotly is a Python library that is used to design graphs, especially interactive graphs. It can plot various graphs and charts like histogram, barplot, boxplot, spreadplot, and many more. It is mainly used in data analysis as well as financial analysis. plotly is an interactive visualization library. 

Stacked Area plot

A stacked area chart is the amplification of a basic area chart to display the enlargement of the value of several groups on the same graphic. The values of each group are displayed on top of each other. This is the best chart to be used to show the distribution of categories as parts of a whole area where the cumulative total is unnecessary. It can be created by passing the stackgroup  parameter  in the scatter() method of graph_objects class

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Example 1:



Python3




import plotly.graph_objects as px
import numpy
  
  
# creating random data through randomint 
# function of numpy.random 
np.random.seed(42)
  
random_x= np.random.randint(1,101,100
random_y= np.random.randint(1,101,100)
  
x = ['A', 'B', 'C', 'D']
  
plot = px.Figure()
  
plot.add_trace(go.Scatter(
    name = 'Data 1',
    x = x,
    y = [100, 200, 500, 673],
    stackgroup='one'
   ))
  
plot.add_trace(go.Scatter(
    name = 'Data 2',
    x = x,
    y = [56, 123, 982, 213],
    stackgroup='one'
   )
)
  
plot.show()

Output:

Example 2:

Python3




import plotly.graph_objects as go
import numpy
  
   
plot = go.Figure(data=[go.Scatter(
    x = np.random.randn(1000),
    y = np.random.randn(1000),
    stackgroup='one'),
                       go.Scatter(
    x = np.random.randn(10),
    y = np.random.randn(50),
    stackgroup='one')
])
                   
plot.show()

Output:

Example 3:

Python3




import plotly.graph_objects as go
import plotly.express as px
import numpy
  
  
df = px.data.iris()
  
plot = go.Figure(data=[go.Scatter(
    x = df['sepal_width'],
    y = df['sepal_length'],
    stackgroup='one'),
                       go.Scatter(
    x = df['petal_width'],
    y = df['petal_length'],
    stackgroup='one')
])
                   
plot.show()

Output:




My Personal Notes arrow_drop_up
Recommended Articles
Page :