Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

How to create DataFrame from dictionary in Python-Pandas?

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Let’s discuss how to create DataFrame from dictionary in Pandas. There are multiple ways to do this task.

Method 1: Create DataFrame from Dictionary using default Constructor of pandas.Dataframe class.

Code:




# import pandas library
import pandas as pd
  
# dictionary with list object in values
details = {
    'Name' : ['Ankit', 'Aishwarya', 'Shaurya', 'Shivangi'],
    'Age' : [23, 21, 22, 21],
    'University' : ['BHU', 'JNU', 'DU', 'BHU'],
}
  
# creating a Dataframe object 
df = pd.DataFrame(details)
  
df

Output:

pandas-create-dataframe-1

Method 2: Create DataFrame from Dictionary with user-defined indexes.

Code:




# import pandas library
import pandas as pd
  
# dictionary with list object in values
details = {
    'Name' : ['Ankit', 'Aishwarya', 'Shaurya', 'Shivangi'],
    'Age' : [23, 21, 22, 21],
    'University' : ['BHU', 'JNU', 'DU', 'BHU'],
}
  
# creating a Dataframe object from dictionary 
# with custom indexing
df = pd.DataFrame(details, index = ['a', 'b', 'c', 'd'])
  
df

Output:

pandas-create-dataframe-2

Method 3: Create DataFrame from simple dictionary i.e dictionary with key and simple value like integer or string value.

Code:




# import pandas library
import pandas as pd
  
# dictionary
details = {
    'Ankit' : 22,
    'Golu' : 21,
    'hacker' : 23
    }
  
# creating a Dataframe object from a list 
# of tuples of key, value pair
df = pd.DataFrame(list(details.items()))
  
df

Output:

pandas-create-dataframe-3

Method 4: Create DataFrame from Dictionary with required columns only.

Code:




# import pandas library
import pandas as pd
  
# dictionary with list object in values
details = {
    'Name' : ['Ankit', 'Aishwarya', 'Shaurya', 'Shivangi'],
    'Age' : [23, 21, 22, 21],
    'University' : ['BHU', 'JNU', 'DU', 'BHU'],
}
  
# creating a Dataframe object with skipping 
# one column i.e skipping age column.
df = pd.DataFrame(details, columns = ['Name', 'University'])
  
df

Output:

pandas-create-dataframe-4

Method 5: Create DataFrame from Dictionary with different Orientation i.e. Dictionary key is act as indexes in Dataframe.

Code:




# import pandas library
import pandas as pd
  
# dictionary with list object in values
details = {
    'Name' : ['Ankit', 'Aishwarya', 'Shaurya', 'Shivangi'],
    'Age' : [23, 21, 22, 21],
    'University' : ['BHU', 'JNU', 'DU', 'BHU'],
}
  
# creating a Dataframe object in which dictionary
# key is act as index value and column value is
# 0, 1, 2...
df = pd.DataFrame.from_dict(details, orient = 'index')
  
df

Output:

pandas-create-dataframe-5

Method 6: Create DataFrame from nested Dictionary.

Code:




# import pandas library
import pandas as pd
  
# dictionary with dictionary object
# in values i.e. nested dictionary
details =
    0 : {
        'Name' : 'Ankit',
        'Age' : 22,
        'University' : 'BHU'
        },
    1 : {
        'Name' : 'Aishwarya',
        'Age' : 21,
        'University' : 'JNU'
        },
    2 : {
        'Name' : 'Shaurya',
        'Age' : 23,
        'University' : 'DU'
        }
}
  
# creating a Dataframe object
# from nested dictionary
# in which inside dictionary
# key is act as index value
# and column value is 0, 1, 2...
df = pd.DataFrame(details)
  
# swap the columns with indexes
df = df.transpose()
  
df

Output:

pandas-create-dataframe-6


My Personal Notes arrow_drop_up
Last Updated : 10 Jul, 2020
Like Article
Save Article
Similar Reads
Related Tutorials