Many times there is a need to copy one array to another. Numpy provides the facility to copy array using different methods. There are 3 methods to copy a Numpy array to another array.
Method 1: Using np.empty_like() function
This function returns a new array with the same shape and type as a given array.
Syntax:
numpy.empty_like(a, dtype = None, order = ‘K’, subok = True)
Python3
# importing Numpy package import numpy as np # Creating a numpy array using np.array() ary = np.array([ 13 , 99 , 100 , 34 , 65 , 11 , 66 , 81 , 632 , 44 ]) print ( "Original array: " ) # printing the Numpy array print (ary) # Creating an empty Numpy array similar # to ary copy = np.empty_like(ary) # Now assign ary to copy copy[:] = ary print ( "\nCopy of the given array: " ) # printing the copied array print (copy) |
Output:
In the above example, the given Numpy array ‘ary‘ is copied to another array ‘copy‘ using np.empty_like () function
Method 2: Using np.copy() function
This function returns an array copy of the given object.
Syntax :
numpy.copy(a, order='K', subok=False)
Example 1:
Python3
# importing Numpy package import numpy as np # Creating a numpy array using np.array() org_array = np.array([ 1.54 , 2.99 , 3.42 , 4.87 , 6.94 , 8.21 , 7.65 , 10.50 , 77.5 ]) print ( "Original array: " ) # printing the Numpy array print (org_array) # Now copying the org_array to copy_array # using np.copy() function copy_array = np.copy(org_array) print ( "\nCopied array: " ) # printing the copied Numpy array print (copy_array) |
Output:
In the above example, the given Numpy array ‘org_array‘ is copied to another array ‘copy_array‘ using np.copy () function
Example 2: Copy given 3-D array to another array using np.copy() function
Python3
# importing Numpy package import numpy as np # Creating a 3-D numpy array using np.array() org_array = np.array([[ 23 , 46 , 85 ], [ 43 , 56 , 99 ], [ 11 , 34 , 55 ]]) print ( "Original array: " ) # printing the Numpy array print (org_array) # Now copying the org_array to copy_array # using np.copy() function copy_array = np.copy(org_array) print ( "\nCopied array: " ) # printing the copied Numpy array print (copy_array) |
Output:
In the above example, the given 3-D Numpy array ‘org_array‘ is copied to another array ‘copy_array‘ using np.copy () function
Method 3: Using Assignment Operator
Python3
# importing Numpy package import numpy as np # Create a 2-D Numpy array using np.array() org_array = np.array([[ 99 , 22 , 33 ], [ 44 , 77 , 66 ]]) # Copying org_array to copy_array # using Assignment operator copy_array = org_array # modifying org_array org_array[ 1 , 2 ] = 13 # checking if copy_array has remained the same # printing original array print ( 'Original Array: \n' , org_array) # printing copied array print ( '\nCopied Array: \n' , copy_array) |
Output:
In the above example, the given Numpy array ‘org_array‘ is copied to another array ‘copy_array‘ using Assignment Operator.
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.