Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

How to Convert Pandas DataFrame columns to a Series?

  • Last Updated : 01 Oct, 2020

It is possible in pandas to convert columns of the pandas Data frame to series. Sometimes there is a need to converting columns of the data frame to another type like series for analyzing the data set. 

Case 1: Converting the first column of the data frame to Series

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Python3






# Importing pandas module
import pandas as pd
  
# Creating a dictionary 
dit = {'August': [10, 25, 34, 4.85, 71.2, 1.1], 
       'September': [4.8, 54, 68, 9.25, 58, 0.9], 
       'October': [78, 5.8, 8.52, 12, 1.6, 11], 
       'November': [100, 5.8, 50, 8.9, 77, 10] }
  
# Converting it to data frame
df = pd.DataFrame(data=dit)
  
# Original DataFrame
df

Output:

Converting the first column to series.

Python3




# Converting first column i.e 'August' to Series
ser1 = df.ix[:,0]
  
print("\n1st column as a Series:\n")
print(ser1)
  
# Checking type
print(type(ser1))

Output:

In the above example, we change the type of column ‘August‘ from the data frame to Series.

Case 2: Converting the last column of the data frame to Series



Python3




# Importing pandas module
import pandas as pd
  
# Creating a dictionary 
dit = {'August': [10, 25, 34, 4.85, 71.2, 1.1], 
       'September': [4.8, 54, 68, 9.25, 58, 0.9], 
       'October': [78, 5.8, 8.52, 12, 1.6, 11], 
       'November': [100, 5.8, 50, 8.9, 77, 10] }
  
# Converting it to data frame
df = pd.DataFrame(data=dit)
  
# Original DataFrame
df

Output:

Converting the last column to the series.

Python3




# Converting last column i.e 'November' to Series
ser1 = df.ix[:,3]
  
print("\nLast column as a Series:\n")
print(ser1)
  
# Checking type
print(type(ser1))

Output:

In the above example, we change the type of column ‘November‘ from the data frame to Series.

Case 3: Converting the multiple columns of the data frame to Series

Python3






# Importing pandas module
import pandas as pd
  
# Creating a dictionary 
dit = {'August': [10, 25, 34, 4.85, 71.2, 1.1], 
       'September': [4.8, 54, 68, 9.25, 58, 0.9], 
       'October': [78, 5.8, 8.52, 12, 1.6, 11], 
       'November': [100, 5.8, 50, 8.9, 77, 10] }
  
# Converting it to data frame
df = pd.DataFrame(data=dit)
  
# Original DataFrame
df

Output:

Converting multiple columns to series.

Python3




# Converting multiple columns 
# i.e 'September' and 'October' to Series
ser1 = df.ix[:,1]
ser2 = df.ix[:,2]
  
print("\nMultiple columns as a Series:\n")
print(ser1)
print()
print(ser2)
  
# Checking type
print(type(ser1))
print(type(ser2))

Output:

In the above example, we change the type of 2 columns i.e ‘September‘ and ‘October’ from the data frame to Series.




My Personal Notes arrow_drop_up
Recommended Articles
Page :