Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

How To Convert Numpy Array To Tensor?

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

The tf.convert_to_tensor() method from the TensorFlow library is used to convert a NumPy array into a Tensor. The distinction between a NumPy array and a tensor is that tensors, unlike NumPy arrays, are supported by accelerator memory such as the GPU, they have a faster processing speed. there are a few other ways to achieve this task. 

tf.convert_to_tensor() function:

Syntax:

tf.convert_to_tensor( value, dtype=None, dtype_hint=None, name=None)

parameters:

  • value : The type of an object with a registered Tensor conversion function.
  • dtype: by default it is None. The returned tensor’s element type is optional. If the type isn’t specified, the type is inferred from the value type.
  • dtype_hint: by default None. When dtype is None, this is an optional component type for the returned tensor. When converting to a tensor, a caller may not have a datatype in mind, hence dtype hint can be used as a  preference. This parameter has no effect if the conversion to dtype hint is not possible.
  • name : by default None. If a new Tensor is produced, this is an optional name to use.

Example 1:

Tensorflow and NumPy packages are imported. a NumPy array is created by using the np.array() method. The NumPy array is converted to tensor by using tf.convert_to_tensor() method. a tensor object is returned. 

Python3




# import packages
import tensorflow as tf
import numpy as np
 
#create numpy_array
numpy_array = np.array([[1,2],[3,4]])
 
# convert it to tensorflow
tensor1 = tf.convert_to_tensor(numpy_array)
print(tensor1)

 

 

Output:

 

tf.Tensor(
[[1 2]
 [3 4]], shape=(2, 2), dtype=int64)

 

Special Case:

 

If we want our tensor to be of a specific dtype we should specify the dtype bypassing the datatype. in the below example float is specified as the dtype.

 

Python3




# import packages
import tensorflow as tf
import numpy as np
 
# create numpy_array
numpy_array = np.array([[1, 2], [3, 4]])
 
# convert it to tensorflow
tensor1 = tf.convert_to_tensor(numpy_array, dtype=float, name='tensor1')
tensor1

Output:

<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[1., 2.],
       [3., 4.]], dtype=float32)>

Example 2:

We can also use the tf.Variable() method to convert a NumPy array to a Tensor. tf.Variable() function also has parameters dtype and name. They’re optional and we can specify them when needed.

Python3




# import packages
import tensorflow as tf
import numpy as np
 
# create numpy_array
numpy_array = np.array([[1, 2], [3, 4]])
 
# convert it to tensorflow
tensor1 = tf.Variable(numpy_array, dtype=float, name='tensor1')
tensor1

Output:

<tf.Variable 'tensor1:0' shape=(2, 2) dtype=float32, numpy=
array([[1., 2.],
       [3., 4.]], dtype=float32)>

My Personal Notes arrow_drop_up
Last Updated : 02 Mar, 2022
Like Article
Save Article
Similar Reads
Related Tutorials