Related Articles

Related Articles

How to Convert Integers to Strings in Pandas DataFrame?
  • Last Updated : 01 Aug, 2020

In this article, we’ll look at different methods to convert an integer into a string in a Pandas dataframe. In Pandas, there are different functions that we can use to achieve this task :

  • map(str)
  • astype(str)
  • apply(str)
  • applymap(str)

Example 1 : In this example, we’ll convert each value of a column of integers to string using the map(str) function.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd 
  
# creating a dictionary of integers
dict = {'Integers' : [10, 50, 100, 350, 700]}
  
# creating dataframe from dictionary
df = pd.DataFrame.from_dict(dict)
print(df)
print(df.dtypes)
  
print('\n')
  
# converting each value of column to a string
df['Integers'] = df['Integers'].map(str)
print(df)
print(df.dtypes)

chevron_right


Output :

We can see in the above output that before the the datatype was int64 and after the conversion to a string, the datatype is an object which represents a string.



Example 2 : In this example, we’ll convert each value of a column of integers to string using the astype(str) function.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd 
  
# creating a dictionary of integers
dict = {'Integers' : [10, 50, 100, 350, 700]}
  
# creating dataframe from dictionary
df = pd.DataFrame.from_dict(dict)
print(df)
print(df.dtypes)
  
print('\n')
  
# converting each value of column to a string
df['Integers'] = df['Integers'].astype(str)
  
print(df)
print(df.dtypes)

chevron_right


Output :

We can see in the above output that before the the datatype was int64 and after the conversion to a string, the datatype is an object which represents a string.

Example 3 : In this example, we’ll convert each value of a column of integers to string using the apply(str) function.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd 
  
# creating a dictionary of integers
dict = {'Integers' : [10, 50, 100, 350, 700]}
  
# creating dataframe from dictionary
df = pd.DataFrame.from_dict(dict)
print(df)
print(df.dtypes)
  
print('\n')
  
# converting each value of column to a string
df['Integers'] = df['Integers'].apply(str)
print(df)
print(df.dtypes)

chevron_right


Output :

We can see in the above output that before the the datatype was int64 and after the conversion to a string, the datatype is an object which represents a string.

Example 4 : All the methods we saw above, convert a single column from an integer to a string. But we can also convert the whole dataframe into a string using the applymap(str) method.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd 
  
# creating a dictionary of integers
dict = {'Roll No.' : [1, 2, 3, 4, 5], 'Marks':[79, 85, 91, 81, 95]}
  
# creating dataframe from dictionary
df = pd.DataFrame.from_dict(dict)
print(df)
print(df.dtypes)
  
print('\n')
  
# converting each value of column to a string
df = df.applymap(str)
print(df)
print(df.dtypes)

chevron_right


Output :

We can see in the above output that before the the datatype was int64 and after the conversion to a string, the datatype is an object which represents a string.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :