Related Articles

Related Articles

How to Convert Integer to Datetime in Pandas DataFrame?
  • Difficulty Level : Easy
  • Last Updated : 10 Jul, 2020

Let’s discuss how to convert an Integer to Datetime in it. Now to convert Integers to Datetime in Pandas DataFrame, we can use the following syntax:

df[‘DataFrame Column’] = pd.to_datetime(df[‘DataFrame Column’], format=specify your format)

Note: The integers data must match the format specified.

Example #1:

Python



filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas package
import pandas as pd
  
# creating a dataframe
values = {'Dates':  [20190902, 20190913, 20190921],
          'Attendance': ['Attended', 'Not Attended', 'Attended']
          }
  
df = pd.DataFrame(values, columns=['Dates', 'Attendance'])
  
# display
print(df)
print(df.dtypes)

chevron_right


Output:

As we can see,  the data type for the ‘Dates’ column is Integer. Now to convert it into Datetime we use the previously mentioned syntax. Since in this example the date format is yyyymmdd, the date format can be represented as follows:

format= '%Y%m%d'

For our example, the complete code to convert the integers to DateTime would be:

Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas package
import pandas as pd
  
# creating the dataframe
values = {'Dates':  [20190902, 20190913, 20190921],
          'Attendance': ['Attended', 'Not Attended', 'Attended']
          }
  
df = pd.DataFrame(values, columns=['Dates', 'Attendance'])
  
# converting the integers to datetime format
df['Dates'] = pd.to_datetime(df['Dates'], format='%Y%m%d')
  
# display
print(df)
print(df.dtypes)

chevron_right


Output:

Example #2: Now, suppose the Dataframe has a date in format yymmdd. In this case, the date format would now contain ‘y’ in lowercase:



format='%y%m%d'

So the complete Python code would look as follows:

Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas package
import pandas as pd
  
# creating dataframe
values = {'Dates':  [190902, 190913, 190921],
          'Attendance': ['Attended', 'Not Attended', 'Attended']
          }
  
df = pd.DataFrame(values, columns=['Dates', 'Attendance'])
  
# changing the integer dates to datetime format
df['Dates'] = pd.to_datetime(df['Dates'], format='%y%m%d')
  
# display
print(df)
print(df.dtypes)

chevron_right


Output:

Example #3: Now, let’s suppose that your integers contain both date and time. In that case, the format that you should specify is:

format='%Y%m%d%H%M%S'

So the full Python code would be:

Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas package
import pandas as pd
  
# creating dataframe
values = {'Dates': [20190902093000, 20190913093000, 20190921200000],
          'Attendance': ['Attended', 'Not Attended', 'Attended']
          }
  
df = pd.DataFrame(values, columns=['Dates', 'Attendance'])
  
# changing integer values to datetime format
df['Dates'] = pd.to_datetime(df['Dates'], format='%Y%m%d%H%M%S')
  
# display
print(df)
print(df.dtypes)

chevron_right


Output:

Example #4: Consider this DataFrame with microseconds in our DateTime values. In this case, the format should be specified as:

format='%Y%m%d%H%M%S%F'

So the full Python code will be:

Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas package
import pandas as pd
  
# creating dataframe
values = {'Dates':  [20190902093000912, 20190913093000444
                     20190921200000009],
          'Attendance': ['Attended', 'Not Attended', 'Attended']
          }
  
df = pd.DataFrame(values, columns=['Dates', 'Attendance'])
  
# changing the integer dates to datetime format
df['Dates'] = pd.to_datetime(df['Dates'], format='%Y%m%d%H%M%S%F')
  
# display
print(df)
print(df.dtypes)

chevron_right


Output:


Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :