Skip to content
Related Articles

Related Articles

How to compute cross-correlation of two given NumPy arrays?
  • Last Updated : 08 Dec, 2020

In the Numpy program, we can compute cross-correlation of two given arrays with the help of correlate(). In this first parameter and second parameter pass the given arrays it will return the cross-correlation of two given arrays.

Syntax : numpy.correlate(a, v, mode = ‘valid’)

Parameters :
a, v : [array_like] Input sequences.
mode : [{‘valid’, ‘same’, ‘full’}, optional] Refer to the convolve docstring. Default is ‘valid’.

Return : [ndarray] Discrete cross-correlation of a and v.

Example 1:

In this example, we will create two NumPy arrays and the task is to compute cross-correlation using correlate().

Python3




import numpy as np
array1 = np.array([0, 1, 2])
array2 = np.array([3, 4, 5])
  
# Original array1
print(array1)
  
# Original array2
print(array2)
  
# ross-correlation of the arrays
print("\nCross-correlation:\n",
      np.correlate(array1, array2))

Output:



[0 1 2]
[3 4 5]

Cross-correlation:
 [14]

Example 2:

Python3




import numpy as np
array1 = np.array([1,2])
array2 = np.array([1,2])
  
# Original array1
print(array1)
  
# Original array2
print(array2)
# Cross-correlation of the arrays
print("\nCross-correlation:\n",
      np.correlate(array1, array2))

Output:

[1 2]
[1 2]

Cross-correlation:
 [5]

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :