Skip to content
Related Articles

Related Articles

How to Change the Transparency of a Graph Plot in Matplotlib with Python?
  • Last Updated : 25 Nov, 2020

Matplotlib is a library in Python and it is numerical — mathematical extension for NumPy library. Pyplot is a state-based interface to a matplotlib module which provides a MATLAB-like interface. There are various plots that can be used in Pyplot are Line Plot, Contour, Histogram, Scatter, 3D Plot, etc.

In order to change the transparency of a graph plot in matplotlib we will use the matplotlib.pyplot.plot() function. The plot() function in pyplot module of matplotlib library is used to make 2D illustrations. 

Syntax: matplotlib.pyplot.plot(\*args, scalex=True, scaley=True, data=None, \*\*kwargs)

Parameters: This method accept the following parameters that are described below: 

  • x, y: These parameter are the horizontal and vertical coordinates of the data points. x values are optional.
  • fmt: This parameter is an optional parameter and it contains the string value.
  • data: This parameter is an optional parameter and it is an object with labelled data.

Returns: This returns the following: 



  • lines : This returns the list of Line2D objects representing the plotted data.

Another argument that we are going to use is alpha argument, this argument is responsible for the transparency of any illustration depicted using matplotlib library. Its value ranges from 0 to 1, by default its value is 1 representing the opaqueness of the illustration.

Below are some examples which depict how to change the transparency of a Graph Plot using matplotlib library

Example 1: 

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing module
import matplotlib.pyplot as plt
  
# assigning x and y coordinates
y = [0, 1, 2, 3, 4, 5]
x = [0, 5, 10, 15, 20, 25]
  
# depicting the visualization
plt.plot(x, y, color='green', alpha=0.25)
plt.xlabel('x')
plt.ylabel('y')
  
# displaying the title
plt.title("Linear graph")
  
plt.show()

chevron_right


Output:

In the above program, the linear graph is depicted with transparency i.e alpha=0.25.

Example 2:

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing module
import matplotlib.pyplot as plt
  
  
# assigning x and y coordinates
x = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
y = []
  
for i in range(len(x)):
    y.append(max(0, x[i]))
  
# depicting the visualization
plt.plot(x, y, color='green', alpha=0.75)
plt.xlabel('x')
plt.ylabel('y')
  
# displaying the title
plt.title(label="ReLU function graph",
                fontsize=40,
                color="green")

chevron_right


Output:



Here, the plot is quite opaque as the alphavalue is close to 1(opaque).

Example 3:

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing modules
from matplotlib import pyplot
import numpy
  
# assigning time values of the signal
# initial time period, final time period
# and phase angle
signalTime = numpy.arange(0, 100, 0.5)
  
# getting the amplitude of the signal
signalAmplitude = numpy.sin(signalTime)
  
# depicting the visualization
pyplot.plot(signalTime, signalAmplitude, 
            color='green', alpha=0.1)
  
pyplot.xlabel('Time')
pyplot.ylabel('Amplitude')
  
# displaying the title
pyplot.title("Signal",
             loc='right',
             rotation=45)

chevron_right


Output:

The above example depicts a signal with an alpha value 0.1.

Example 4:

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing module
import matplotlib.pyplot as plt
  
# assigning x and y coordinates
z = [i for i in range(0, 6)]
  
for i in range(0, 11, 2):
    
    # depicting the visualization
    plt.plot(z, z, color='green', alpha=i/10)
    plt.xlabel('x')
    plt.ylabel('y')
  
    # displaying the title
    print('\nIllustration with alpha =', i/10)
  
    plt.show()

chevron_right


Output:

The above program depicts the same illustration with variable alpha values.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :