Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

How to calculate and plot a Cumulative Distribution function with Matplotlib in Python ?

  • Last Updated : 24 Jan, 2021

Prerequisites: Matplotlib 

Matplotlib is a library in Python and it is a numerical — mathematical extension for the NumPy library.  The cumulative distribution function (CDF) of a real-valued random variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value less than or equal to x.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Properties of CDF:

  • Every cumulative distribution function F(X) is non-decreasing
  • If maximum value of the cdf function is at x, F(x) = 1.
  • The CDF ranges from 0 to 1.

Method 1: Using the histogram

CDF can be calculated using PDF (Probability Distribution Function). Each point of random variable will contribute cumulatively to form CDF.

Example : 

A combination set containing 2 balls which can be either red or blue can be in the following set.

{RR, RB, BR, BB}

t -> No of red balls.

P(x = t) -> t = 0 : 1 / 4 [BB] 

            t = 1 : 2 / 4 [RB, BR]

            t = 2 : 1 / 4 [RR]



F(x) = P(x<=t)

x = 0 : P(0)               -> 1 / 4

x = 1 : P(1) + P(0)        -> 3 / 4

x = 2 : P(2) + P(1) + P(0) -> 1


  • Import modules
  • Declare number of data points
  • Initialize random values
  • Plot histogram using above data
  • Get histogram data
  • Finding PDF using histogram data
  • Calculate CDF
  • Plot CDF



# defining the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline
# No of Data points
N = 500
# initializing random values
data = np.random.randn(N)
# getting data of the histogram
count, bins_count = np.histogram(data, bins=10)
# finding the PDF of the histogram using count values
pdf = count / sum(count)
# using numpy np.cumsum to calculate the CDF
# We can also find using the PDF values by looping and adding
cdf = np.cumsum(pdf)
# plotting PDF and CDF
plt.plot(bins_count[1:], pdf, color="red", label="PDF")
plt.plot(bins_count[1:], cdf, label="CDF")


Histogram plot of the PDF and CDF :

Plotted CDF:

CDF plotting

Method 2: Data sort 

This method depicts how CDF can be calculated and plotted using sorted data. For this, we first sort the data and then handle further calculations.


  • Import module
  • Declare number of data points
  • Create data
  • Sort data in ascending order
  • Get CDF
  • Plot CDF
  • Display plot



# defining the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline
# No of data points used
N = 500
# normal distribution
data = np.random.randn(N)
# sort the data in ascending order
x = np.sort(data)
# get the cdf values of y
y = np.arange(N) / float(N)
# plotting
plt.title('CDF using sorting the data')
plt.plot(x, y, marker='o')


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!