Skip to content
Related Articles

Related Articles

Improve Article
How to build an array of all combinations of two NumPy arrays?
  • Last Updated : 05 Sep, 2020

Sometimes we need to find the combination of elements of two or more arrays. Numpy has a function to compute the combination of 2 or more Numpy arrays named as “numpy.meshgrid()“. This function is used to create a rectangular grid out of two given one-dimensional arrays representing the Cartesian indexing or Matrix indexing.

Syntax:

numpy.meshgrid(*xi, copy=True, sparse=False, indexing='xy')

Example 1: Computing combinations of elements of Two NumPy arrays

Python3




# importing Numpy package
import numpy as np
  
# creating 2 numpy arrays
array_1 = np.array([1, 2])
array_2 = np.array([4, 6])
  
print("Array-1")
print(array_1)
  
print("\nArray-2")
print(array_2)
  
# combination of elements of array_1 and array_2
# using numpy.meshgrid().T.reshape()
comb_array = np.array(np.meshgrid(array_1, array_2)).T.reshape(-1, 2)
  
print("\nCombine array:")
print(comb_array)

Output:



In the above example, we combine elements of ‘array_1‘ and ‘array_2‘ using numpy.meshgrid().T.reshape() 

Example 2: Computing combinations of elements of Three NumPy arrays

Python3




# importing Numpy package
import numpy as np
  
# creating 3 numpy arrays
array_1 = np.array([1, 2, 3])
array_2 = np.array([4, 6, 4])
array_3 = np.array([3, 6])
  
print("Array-1")
print(array_1)
  
print("Array-2")
print(array_2)
  
print("Array-3")
print(array_3)
  
  
# combination of elements of array_1,
# array_2 and array_3 using 
# numpy.meshgrid().T.reshape()
comb_array = np.array(
  np.meshgrid(array_1, array_2, array_3)).T.reshape(-1, 3)
  
print("\nCombine array:")
print(comb_array)

Output:

In the above example, we combine elements of ‘array_1‘, ‘array_2‘ and ‘array_3‘ using numpy.meshgrid().T.reshape()

Example 3: Computing combinations of elements of Four NumPy arrays

Python3




# importing Numpy package
import numpy as np
  
# creating 4 numpy arrays
array_1 = np.array([50, 21])
array_2 = np.array([4, 4])
array_3 = np.array([1, 10])
array_4 = np.array([7, 14])
  
  
print("Array-1")
print(array_1)
  
print("Array-2")
print(array_2)
  
print("Array-3")
print(array_3)
  
print("Array-4")
print(array_4)
  
  
# combination of elements of array_1, 
# array_2, array_3 and array_4
# using numpy.meshgrid().T.reshape()
comb_array = np.array(np.meshgrid(
    array_1, array_2, array_3, array_4)).T.reshape(-1, 4)
  
print("\nCombine array:")
print(comb_array)

Output:

In the above example, we combine elements of ‘array_1‘, ‘array_2‘, ‘array_3‘ and ‘array_4‘ using numpy.meshgrid().T.reshape()

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :