Skip to content
Related Articles

Related Articles

How to Apply a function to multiple columns in Pandas?

View Discussion
Improve Article
Save Article
  • Last Updated : 24 Oct, 2021

Let us see how to apply a function to multiple columns in a Pandas DataFrame. To execute this task will be using the apply() function.
 

pandas.DataFrame.apply

This function applies a function along an axis of the DataFrame. 
 

Syntax : DataFrame.apply(parameters)
Parameters : 
 

  • func : Function to apply to each column or row.
  • axis : Axis along which the function is applied
  • raw : Determines if row or column is passed as a Series or ndarray object.
  • result_type : ‘expand’, ‘reduce’, ‘broadcast’, None; default None
  • args : Positional arguments to pass to func in addition to the array/series.
  • **kwds : Additional keyword arguments to pass as keywords arguments to func.

Returns : Series or DataFrame 
 

Example 1 : Prepending “Geek” before every element in two columns. 
 

Python3




# import the module
import pandas as pd
 
# creating a DataFrame
df = pd.DataFrame({'String 1' :['Tom', 'Nick', 'Krish', 'Jack'],
                   'String 2' :['Jane', 'John', 'Doe', 'Mohan']})
 
# displaying the DataFrame
display(df)
 
# function for prepending 'Geek'
def prepend_geek(name):
    return 'Geek ' + name
 
# executing the function
df[["String 1", "String 2"]] = df[["String 1", "String 2"]].apply(prepend_geek)
 
# displaying the DataFrame
display(df)

Output : 
 

Example 2 : Multiplying the value of each element by 2 
 

Python3




# import the module
import pandas as pd
 
# creating a DataFrame
df = pd.DataFrame({'Integers' :[1, 2, 3, 4, 5],
                   'Float' :[1.1, 2.2, 3.3, 4.4 ,5.5]})
 
# displaying the DataFrame
display(df)
 
# function for prepending 'Geek'
def multiply_by_2(number):
    return 2 * number
 
# executing the function
df[["Integers", "Float"]] = df[["Integers", "Float"]].apply(multiply_by_2)
 
# displaying the DataFrame
display(df)

Output : 
 

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!