# Honaker Prime Number

Honaker Prime Number is a prime number P such that the sum of digits of P and sum of digits of index of P is a Prime Number.
Few Honaker Prime Numbers are:

131, 263, 457, 1039, 1049, 1091, 1301, 1361, 1433, 1571, 1913, 1933, 2141, 2221,…

### Check if N is a Honaker Prime Number

Given an integer N, the task is to check if N is a Honaker Prime Number or not. If N is an Honaker Prime Number then print “Yes” else print “No”.

Examples:

Input: N = 131
Output: Yes
Explanation:
Sum of digits of 131 = 1 + 3 + 1 = 5
Sum of digits of 32 = 3 + 2 = 5

Input: N = 161
Output: No

Approach: The idea is to find the index of the given number and check if sum of digits of index and N is the same or not. If it is same then, N is an Honaker Prime Number and print “Yes” else print “No”.

## C++

 `// C++ program for the above approach` `#include ` `#define limit 10000000` `using` `namespace` `std;`   `int` `position[limit + 1];`   `// Function to precompute the position` `// of every prime number using Sieve` `void` `sieve()` `{` `    ``// 0 and 1 are not prime numbers` `    ``position = -1, position = -1;`   `    ``// Variable to store the position` `    ``int` `pos = 0;`   `    ``for` `(``int` `i = 2; i <= limit; i++) {`   `        ``if` `(position[i] == 0) {`   `            ``// Incrementing the position for` `            ``// every prime number` `            ``position[i] = ++pos;` `            ``for` `(``int` `j = i * 2; j <= limit; j += i)` `                ``position[j] = -1;` `        ``}` `    ``}` `}`   `// Function to get sum of digits` `int` `getSum(``int` `n)` `{` `    ``int` `sum = 0;` `    ``while` `(n != 0) {` `        ``sum = sum + n % 10;` `        ``n = n / 10;` `    ``}` `    ``return` `sum;` `}`   `// Function to check whether the given number` `// is Honaker Prime number or not` `bool` `isHonakerPrime(``int` `n)` `{` `    ``int` `pos = position[n];` `    ``if` `(pos == -1)` `        ``return` `false``;` `    ``return` `getSum(n) == getSum(pos);` `}`   `// Driver Code` `int` `main()` `{` `    ``// Precompute the prime numbers till 10^6` `    ``sieve();`   `    ``// Given Number` `    ``int` `N = 121;`   `    ``// Function Call` `    ``if` `(isHonakerPrime(N))` `        ``cout << ``"Yes"``;` `    ``else` `        ``cout << ``"No"``;` `}`

## Java

 `// Java program for above approach ` `class` `GFG{ `   `static` `final` `int` `limit = ``10000000``; ` `static` `int` `[]position = ``new` `int``[limit + ``1``]; ` `    `  `// Function to precompute the position ` `// of every prime number using Sieve ` `static` `void` `sieve() ` `{ ` `    ``// 0 and 1 are not prime numbers ` `    ``position[``0``] = -``1``; ` `    ``position[``1``] = -``1``; ` `    `  `    ``// Variable to store the position ` `    ``int` `pos = ``0``; ` `    ``for` `(``int` `i = ``2``; i <= limit; i++) ` `    ``{ ` `        ``if` `(position[i] == ``0``) ` `        ``{ ` `    `  `            ``// Incrementing the position for ` `            ``// every prime number ` `            ``position[i] = ++pos; ` `            ``for` `(``int` `j = i * ``2``; j <= limit; j += i) ` `                ``position[j] = -``1``; ` `        ``} ` `    ``} ` `} `   `// Function to get sum of digits` `static` `int` `getSum(``int` `n)` `{` `    ``int` `sum = ``0``;` `    ``while` `(n != ``0``) ` `    ``{` `        ``sum = sum + n % ``10``;` `        ``n = n / ``10``;` `    ``}` `    ``return` `sum;` `}`   `// Function to check whether the given number` `// is Honaker Prime number or not` `static` `boolean` `isHonakerPrime(``int` `n)` `{` `    ``int` `pos = position[n];` `    ``if` `(pos == -``1``)` `        ``return` `false``;` `    ``return` `getSum(n) == getSum(pos);` `}`   `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``// Precompute the prime numbers till 10^6` `    ``sieve();`   `    ``// Given Number` `    ``int` `N = ``121``;`   `    ``// Function Call` `    ``if` `(isHonakerPrime(N))` `        ``System.out.print(``"Yes\n"``);` `    ``else` `        ``System.out.print(``"No\n"``); ` `} ` `} `   `// This code is contributed by shubham `

## Python3

 `# Python3 program for the above approach ` `limit ``=` `10000000`   `position ``=` `[``0``] ``*` `(limit ``+` `1``)`   `# Function to precompute the position ` `# of every prime number using Sieve ` `def` `sieve(): ` `    `  `    ``# 0 and 1 are not prime numbers ` `    ``position[``0``] ``=` `-``1` `    ``position[``1``] ``=` `-``1`   `    ``# Variable to store the position ` `    ``pos ``=` `0`   `    ``for` `i ``in` `range``(``2``, limit ``+` `1``):` `        ``if` `(position[i] ``=``=` `0``): ` `            `  `            ``# Incrementing the position for ` `            ``# every prime number` `            ``pos ``+``=` `1` `            ``position[i] ``=` `pos ` `            `  `            ``for` `j ``in` `range``(i ``*` `2``, limit ``+` `1``, i):` `                ``position[j] ``=` `-``1`   `# Function to get sum of digits ` `def` `getSum(n): `   `    ``Sum` `=` `0` `    `  `    ``while` `(n !``=` `0``): ` `        ``Sum` `=` `Sum` `+` `n ``%` `10` `        ``n ``=` `n ``/``/` `10` ` `  `    ``return` `Sum`   `# Function to check whether the given` `# number is Honaker Prime number or not ` `def` `isHonakerPrime(n): `   `    ``pos ``=` `position[n] ` `    `  `    ``if` `(pos ``=``=` `-``1``): ` `        ``return` `False` `        `  `    ``return` `bool``(getSum(n) ``=``=` `getSum(pos))`   `# Driver code`   `# Precompute the prime numbers till 10^6 ` `sieve() `   `# Given Number ` `N ``=` `121`   `# Function Call ` `if` `(isHonakerPrime(N)): ` `    ``print``(``"Yes"``)` `else``:` `    ``print``(``"No"``)`   `# This code is contributed by divyeshrabadiya07`

## C#

 `// C# program for above approach ` `using` `System;` `class` `GFG{ `   `static` `readonly` `int` `limit = 10000000; ` `static` `int` `[]position = ``new` `int``[limit + 1]; ` `    `  `// Function to precompute the position ` `// of every prime number using Sieve ` `static` `void` `sieve() ` `{ ` `    ``// 0 and 1 are not prime numbers ` `    ``position = -1; ` `    ``position = -1; ` `    `  `    ``// Variable to store the position ` `    ``int` `pos = 0; ` `    ``for` `(``int` `i = 2; i <= limit; i++) ` `    ``{ ` `        ``if` `(position[i] == 0) ` `        ``{ ` `    `  `            ``// Incrementing the position for ` `            ``// every prime number ` `            ``position[i] = ++pos; ` `            ``for` `(``int` `j = i * 2; j <= limit; j += i) ` `                ``position[j] = -1; ` `        ``} ` `    ``} ` `} `   `// Function to get sum of digits` `static` `int` `getSum(``int` `n)` `{` `    ``int` `sum = 0;` `    ``while` `(n != 0) ` `    ``{` `        ``sum = sum + n % 10;` `        ``n = n / 10;` `    ``}` `    ``return` `sum;` `}`   `// Function to check whether the given number` `// is Honaker Prime number or not` `static` `bool` `isHonakerPrime(``int` `n)` `{` `    ``int` `pos = position[n];` `    ``if` `(pos == -1)` `        ``return` `false``;` `    ``return` `getSum(n) == getSum(pos);` `}`   `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``// Precompute the prime numbers till 10^6` `    ``sieve();`   `    ``// Given Number` `    ``int` `N = 121;`   `    ``// Function Call` `    ``if` `(isHonakerPrime(N))` `        ``Console.Write(``"Yes\n"``);` `    ``else` `        ``Console.Write(``"No\n"``); ` `} ` `} `   `// This code is contributed by 29AjayKumar`

Output:

```No

```

Reference: https://oeis.org/A033548

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.